A Bayesian approach to detecting change points in climatic records

Given distinct climatic periods in the various facets of the Earth's climate system, many attempts have been made to determine the exact timing of ‘change points’ or regime boundaries. However, identification of change points is not always a simple task. A time series containing N data points has approximately Nk distinct placements of k change points, rendering brute force enumeration futile as the length of the time series increases. Moreover, how certain are we that any one placement of change points is superior to the rest? This paper introduces a Bayesian Change Point algorithm which provides uncertainty estimates both in the number and location of change points through an efficient probabilistic solution to the multiple change point problem. To illustrate its versatility, the Bayesian Change Point algorithm is used to analyse both the NOAA/NCDC annual global surface temperature anomalies time series and the much longer δ18O record of the Plio-Pleistocene. Copyright © 2012 Royal Meteorological Society

[1]  Henri Caussinus,et al.  Detection and correction of artificial shifts in climate series , 2004 .

[2]  Thomas C. Peterson,et al.  An operational near‐real‐time global temperature index , 1999 .

[3]  Pao-Shin Chu,et al.  Bayesian Multiple Changepoint Analysis of Hurricane Activity in the Eastern North Pacific: A Markov Chain Monte Carlo Approach , 2006 .

[4]  Pedro M. A. Miranda,et al.  Piecewise linear fitting and trend changing points of climate parameters , 2004 .

[5]  Taha B. M. J. Ouarda,et al.  A Bayesian normal homogeneity test for the detection of artificial discontinuities in climatic series , 2010 .

[6]  Carl Wunsch,et al.  Consequences of pacing the Pleistocene 100 kyr ice ages by nonlinear phase locking to Milankovitch forcing , 2006 .

[7]  R. Lund,et al.  Changepoint Detection in Periodic and Autocorrelated Time Series , 2007 .

[8]  Eli Tziperman,et al.  On the mid-Pleistocene transition to 100-kyr glacial cycles and the asymmetry between glaciation and deglaciation times , 2003 .

[9]  Kerim H. Nisancioglu,et al.  Plio-Pleistocene Ice Volume, Antarctic Climate, and the Global δ18O Record , 2006, Science.

[10]  Taha B. M. J. Ouarda,et al.  Recursion‐based multiple changepoint detection in multiple linear regression and application to river streamflows , 2007 .

[11]  Jun S. Liu,et al.  Bayesian inference on biopolymer models , 1999, Bioinform..

[12]  M. J. Newman,et al.  Variations in the Earth ' s Orbit : Pacemaker of the Ice Ages , 2007 .

[13]  Matthew J. Menne,et al.  ABRUPT GLOBAL TEMPERATURE CHANGE AND THE INSTRUMENTAL RECORD , 2005 .

[14]  Richard A. Muller,et al.  Glacial cycles and orbital inclination , 1995, Nature.

[15]  J-M Loubes,et al.  Penalized maximum likelihood estimation with l1 penalty , 2009 .

[16]  Jeffrey S. Simonoff,et al.  Penalized Maximum Likelihood , 2005 .

[17]  D. Stephens Bayesian Retrospective Multiple‐Changepoint Identification , 1994 .

[18]  Philippe Naveau,et al.  Bayesian multiple change points and segmentation: Application to homogenization of climatic series , 2009 .

[19]  Michael Schulz,et al.  The Mid-Pleistocene climate transition: onset of 100 ka cycle lags ice volume build-up by 280 ka , 1997 .

[20]  John R. Lanzante,et al.  Resistant, Robust and Non-Parametric Techniques for the Analysis of Climate Data: Theory and Examples, Including Applications to Historical Radiosonde Station Data , 1996 .

[21]  Gordon J. F. MacDonald,et al.  Glacial Cycles and Astronomical Forcing , 1997 .

[22]  T. Karl,et al.  The record breaking global temperatures of 1997 and 1998: Evidence for an increase in the rate of global warming? , 2000 .

[23]  Taha B. M. J. Ouarda,et al.  Bayesian change‐point analysis of heat spell occurrences in Montreal, Canada , 2007 .

[24]  Milutin Milankovictch,et al.  Canon of insolation and the ice-age problem : (Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem) Belgrade, 1941. , 1998 .

[25]  S. Evtimov,et al.  1963: The break point of the Northern Hemisphere temperature trend during the twentieth century , 2010 .

[26]  Maureen E. Raymo,et al.  Evolution of Atlantic―Pacific δ13C gradients over the last 2.5 m.y. , 1990 .

[27]  M. Raymo,et al.  A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records , 2005 .

[28]  C. Lawrence,et al.  Change point method for detecting regime shifts in paleoclimatic time series: Application to δ18O time series of the Plio‐Pleistocene , 2009 .

[29]  Athanasios Kehagias,et al.  Fast segmentation algorithms for long hydrometeorological time series , 2008 .

[30]  Carlo Barbante,et al.  Eight glacial cycles from an Antarctic ice core , 2004, Nature.

[31]  E. Boyle,et al.  On the Structure and Origin of Major Glaciation Cycles 1. Linear Responses to Milankovitch Forcing , 1992 .

[32]  J. Hartigan,et al.  A Bayesian Analysis for Change Point Problems , 1993 .

[33]  James W. Hurrell,et al.  Decadal atmosphere-ocean variations in the Pacific , 1994 .

[34]  Paul Fearnhead,et al.  Exact and efficient Bayesian inference for multiple changepoint problems , 2006, Stat. Comput..

[35]  J. Idier,et al.  Penalized Maximum Likelihood Estimator for Normal Mixtures , 2000 .

[36]  Marc Lavielle,et al.  An application of MCMC methods for the multiple change-points problem , 2001, Signal Process..

[37]  EPICA community members,et al.  Eight glacial cycles from an Antarctic ice core , 2004 .

[38]  D. Seidel,et al.  An assessment of three alternatives to linear trends for characterizing global atmospheric temperature changes , 2004 .

[39]  J. D. Hays,et al.  Variations in the Earth ' s Orbit : Pacemaker of the Ice Ages Author ( s ) : , 2022 .

[40]  Leonardo Veiga La actividad intraemprendedora a nivel mundial. Los resultados del GEM , 2012, BIOINFORMATICS 2012.