Some Trends in Chem(o)informatics.

This introductory chapter gives a brief overview of the history of cheminformatics, and then summarizes some recent trends in computing, cultures, open systems, chemical structure representation, docking, de novo design, fragment-based drug design, molecular similarity, quantitative structure-activity relationships (QSAR), metabolite prediction, the use of phamacophores in drug discovery, data reduction and visualization, and text mining. The aim is to set the scene for the more detailed exposition of these topics in the later chapters.

[1]  Philippe Manivet,et al.  In silico platform for xenobiotics ADME-T pharmacological properties modeling and prediction. Part I: Beyond the reduction of animal model use. , 2009, Drug discovery today.

[2]  Dimitris K. Agrafiotis,et al.  Radial Clustergrams: Visualizing the Aggregate Properties of Hierarchical Clusters , 2007, J. Chem. Inf. Model..

[3]  R. Cramer,et al.  Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. , 1988, Journal of the American Chemical Society.

[4]  Antony J Williams,et al.  Internet-based tools for communication and collaboration in chemistry. , 2008, Drug discovery today.

[5]  J. Gasteiger,et al.  Chemoinformatics: A Textbook , 2003 .

[6]  Peter Willett,et al.  A bibliometric analysis of the Journal of Molecular Graphics and Modelling. , 2007, Journal of molecular graphics & modelling.

[7]  A. Hopkins,et al.  Ligand efficiency: a useful metric for lead selection. , 2004, Drug discovery today.

[8]  A. Hopfinger,et al.  Construction of 3D-QSAR Models Using the 4D-QSAR Analysis Formalism , 1997 .

[9]  Wendy A. Warr,et al.  Chemical Information Management , 1992 .

[10]  Alexander Golbraikh,et al.  Application of predictive QSAR models to database mining: identification and experimental validation of novel anticonvulsant compounds. , 2004, Journal of medicinal chemistry.

[11]  Gerald M. Maggiora,et al.  On Outliers and Activity Cliffs-Why QSAR Often Disappoints , 2006, J. Chem. Inf. Model..

[12]  Aniko Simon,et al.  eHiTS: a new fast, exhaustive flexible ligand docking system. , 2007, Journal of molecular graphics & modelling.

[13]  Peter Willett,et al.  Similarity methods in chemoinformatics , 2009, Annu. Rev. Inf. Sci. Technol..

[14]  Simone Teufel,et al.  Annotation of Chemical Named Entities , 2007, BioNLP@ACL.

[15]  Peter Murray-Rust,et al.  Chemistry for everyone , 2008, Nature.

[16]  Douglas M. Hawkins,et al.  The Problem of Overfitting , 2004, J. Chem. Inf. Model..

[17]  A. H. Lipkus,et al.  Structural Diversity of Organic Chemistry. a Scaffold Analysis of the Cas Registry , 2022 .

[18]  Gerhard Klebe,et al.  Comparison of Automatic Three-Dimensional Model Builders Using 639 X-ray Structures , 1994, J. Chem. Inf. Comput. Sci..

[19]  H. Berman The Protein Data Bank: a historical perspective. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[20]  Luhua Lai,et al.  Further development and validation of empirical scoring functions for structure-based binding affinity prediction , 2002, J. Comput. Aided Mol. Des..

[21]  Ramana Rao,et al.  A focus+context technique based on hyperbolic geometry for visualizing large hierarchies , 1995, CHI '95.

[22]  Yvonne C. Martin,et al.  MENTHOR, a database system for the storage and retrieval of three-dimensional molecular structures and associated data searchable by substructural, biologic, physical, or geometric properties , 1988, J. Comput. Aided Mol. Des..

[23]  Rajarshi Guha,et al.  Structure-Activity Landscape Index: Identifying and Quantifying Activity Cliffs , 2008, J. Chem. Inf. Model..

[24]  Robert P. Sheridan,et al.  Protocols for Bridging the Peptide to Nonpeptide Gap in Topological Similarity Searches , 2001, J. Chem. Inf. Comput. Sci..

[25]  J. A. Grant,et al.  A shape-based 3-D scaffold hopping method and its application to a bacterial protein-protein interaction. , 2005, Journal of medicinal chemistry.

[26]  Tudor I. Oprea,et al.  Optimization of CAMD techniques 3. Virtual screening enrichment studies: a help or hindrance in tool selection? , 2008, J. Comput. Aided Mol. Des..

[27]  N. Null The IUPAC International Chemical Identifier (InChI) , 2009 .

[28]  Debra L. Banville,et al.  Chemical information mining : facilitating literature-based discovery , 2008 .

[29]  Stefan Wetzel,et al.  The Scaffold Tree - Visualization of the Scaffold Universe by Hierarchical Scaffold Classification , 2007, J. Chem. Inf. Model..

[30]  Yi Li,et al.  In silico ADME/Tox: why models fail , 2003, J. Comput. Aided Mol. Des..

[31]  Brian K Shoichet,et al.  Prediction of protein-ligand interactions. Docking and scoring: successes and gaps. , 2006, Journal of medicinal chemistry.

[32]  Tudor I. Oprea,et al.  The Design of Leadlike Combinatorial Libraries. , 1999, Angewandte Chemie.

[33]  Robin Taylor,et al.  Comparing protein–ligand docking programs is difficult , 2005, Proteins.

[34]  Alexander Tropsha,et al.  Recent Trends in Quantitative Structure‐Activity Relationships , 2003 .

[35]  Robert P. Sheridan,et al.  Comparison of Topological, Shape, and Docking Methods in Virtual Screening , 2007, J. Chem. Inf. Model..

[36]  David Weininger,et al.  SMILES. 2. Algorithm for generation of unique SMILES notation , 1989, J. Chem. Inf. Comput. Sci..

[37]  Jürgen Bajorath,et al.  Molecular similarity analysis uncovers heterogeneous structure-activity relationships and variable activity landscapes. , 2007, Chemistry & biology.

[38]  J. Gasteiger,et al.  Computer-assisted reaction prediction and synthesis design , 1990 .

[39]  R. Glen,et al.  Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. , 1995, Journal of molecular biology.

[40]  C. Lemmen,et al.  FLEXS: a method for fast flexible ligand superposition. , 1998, Journal of medicinal chemistry.

[41]  Bob McMeeking,et al.  The United Kingdom Chemical Database Service: CDS , 2004 .

[42]  David Bawden,et al.  Pharmacophoric pattern matching in files of 3d chemical structures: evaluation of search performance , 1987 .

[43]  Alexander Golbraikh,et al.  Predictive QSAR modeling workflow, model applicability domains, and virtual screening. , 2007, Current pharmaceutical design.

[44]  W. Todd Wipke,et al.  STEREOCHEMICALLY UNIQUE NAMING ALGORITHM , 1974 .

[45]  Frank H. Allen,et al.  The Cambridge Crystallographic Database , 2007 .

[46]  James Dugundji,et al.  An algebraic model of constitutional chemistry as a basis for chemical computer programs , 1973 .

[47]  Valerie J. Gillet,et al.  Knowledge-Based Approach to de Novo Design Using Reaction Vectors , 2009, J. Chem. Inf. Model..

[48]  Jürgen Bajorath,et al.  Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. , 2007, Drug discovery today.

[49]  Peter Willett,et al.  A bibliometric analysis of the literature of chemoinformatics , 2008, Aslib Proc..

[50]  Alexander Golbraikh,et al.  Rational selection of training and test sets for the development of validated QSAR models , 2003, J. Comput. Aided Mol. Des..

[51]  Daniel A Erlanson,et al.  Tethering: fragment-based drug discovery. , 2004, Annual review of biophysics and biomolecular structure.

[52]  Steven L. Teig,et al.  Chemical Function Queries for 3D Database Search , 1994, J. Chem. Inf. Comput. Sci..

[53]  Dimitris K. Agrafiotis,et al.  A Geodesic Framework for Analyzing Molecular Similarities , 2003, J. Chem. Inf. Comput. Sci..

[54]  Andrew R. Leach,et al.  An Introduction to Chemoinformatics , 2003 .

[55]  Jun Feng,et al.  PharmID: Pharmacophore Identification Using Gibbs Sampling , 2006, J. Chem. Inf. Model..

[56]  Alain Calvet,et al.  Molecular Property eXplorer: A Novel Approach to Visualizing SAR Using Tree-Maps and Heatmaps , 2005, J. Chem. Inf. Model..

[57]  Gerald M. Maggiora,et al.  Hierarchical Strategy for Identifying Active Chemotype Classes in Compound Databases , 2006, Chemical biology & drug design.

[58]  Yvonne C. Martin,et al.  Use of Structure-Activity Data To Compare Structure-Based Clustering Methods and Descriptors for Use in Compound Selection , 1996, J. Chem. Inf. Comput. Sci..

[59]  Wendy A. Warr,et al.  Fragment-based drug discovery , 2009, J. Comput. Aided Mol. Des..

[60]  Olga Kennard,et al.  Cambridge Crystallographic Data Centre. I. Bibliographic File. , 1972 .

[61]  F. Allen The Cambridge Structural Database: a quarter of a million crystal structures and rising. , 2002, Acta crystallographica. Section B, Structural science.

[62]  Brian K. Shoichet,et al.  ZINC - A Free Database of Commercially Available Compounds for Virtual Screening , 2005, J. Chem. Inf. Model..

[63]  Paola Gramatica,et al.  The Importance of Being Earnest: Validation is the Absolute Essential for Successful Application and Interpretation of QSPR Models , 2003 .

[64]  Tudor I. Oprea,et al.  Chemoinformatics in drug discovery , 2005 .

[65]  Robert P. Sheridan,et al.  Similarity to Molecules in the Training Set Is a Good Discriminator for Prediction Accuracy in QSAR , 2004, J. Chem. Inf. Model..

[66]  Imre G. Csizmadia,et al.  Validation of the SPROUT de novo design program , 2003 .

[67]  Ajay N. Jain,et al.  Ligand-based structural hypotheses for virtual screening. , 2004, Journal of medicinal chemistry.

[68]  A. Ghose,et al.  Knowledge-based chemoinformatic approaches to drug discovery. , 2006, Drug discovery today.

[69]  J. T. Metz,et al.  Ligand efficiency indices as guideposts for drug discovery. , 2005, Drug discovery today.

[70]  P. Hajduk,et al.  Discovering High-Affinity Ligands for Proteins: SAR by NMR , 1996, Science.

[71]  Ingo Muegge,et al.  Advances in virtual screening , 2006, Drug Discovery Today: Technologies.

[72]  J M Blaney,et al.  A geometric approach to macromolecule-ligand interactions. , 1982, Journal of molecular biology.

[73]  M. Congreve,et al.  Recent developments in fragment-based drug discovery. , 2008, Journal of medicinal chemistry.

[74]  Bernd Wendt,et al.  Pushing the boundaries of 3D-QSAR , 2007, J. Comput. Aided Mol. Des..

[75]  Matthew T Stahl Open-source software: not quite endsville. , 2005, Drug discovery today.

[76]  Takayuki Itoh,et al.  Visualization of Large-Scale Aqueous Solubility Data Using a Novel Hierarchical Data Visualization Technique , 2006, J. Chem. Inf. Model..

[77]  John W. Liebeschuetz,et al.  Evaluating docking programs: keeping the playing field level , 2008, J. Comput. Aided Mol. Des..

[78]  G. Klebe Virtual ligand screening: strategies, perspectives and limitations , 2006, Drug Discovery Today.

[79]  Rob Leurs,et al.  Transforming fragments into candidates: small becomes big in medicinal chemistry. , 2009, Drug discovery today.

[80]  Tudor I. Oprea,et al.  Is There a Difference between Leads and Drugs? A Historical Perspective , 2001, J. Chem. Inf. Comput. Sci..

[81]  Gareth Jones,et al.  A genetic algorithm for flexible molecular overlay and pharmacophore elucidation , 1995, J. Comput. Aided Mol. Des..

[82]  J. Gasteiger,et al.  Autocorrelation of Molecular Surface Properties for Modeling Corticosteroid Binding Globulin and Cytosolic Ah Receptor Activity by Neural Networks , 1995 .

[83]  Peter Willett,et al.  GALAHAD: 1. Pharmacophore identification by hypermolecular alignment of ligands in 3D , 2006, J. Comput. Aided Mol. Des..

[84]  Christopher I. Bayly,et al.  Evaluating Virtual Screening Methods: Good and Bad Metrics for the "Early Recognition" Problem , 2007, J. Chem. Inf. Model..

[85]  W. Delano The case for open-source software in drug discovery. , 2005, Drug discovery today.

[86]  Pierre Benichou,et al.  Handling Genericity in Chemical Structures Using the Markush Darc Software , 1997, J. Chem. Inf. Comput. Sci..

[87]  Paul Watson,et al.  Virtual Screening Using Protein-Ligand Docking: Avoiding Artificial Enrichment , 2004, J. Chem. Inf. Model..

[88]  Christopher R. Corbeil,et al.  Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go , 2008, British journal of pharmacology.

[89]  Jeremy L. Jenkins,et al.  Clustering and Rule-Based Classifications of Chemical Structures Evaluated in the Biological Activity Space , 2007, J. Chem. Inf. Model..

[90]  Lars Ridder,et al.  SyGMa: Combining Expert Knowledge and Empirical Scoring in the Prediction of Metabolites , 2008, ChemMedChem.

[91]  J. Gasteiger,et al.  Automatic generation of 3D-atomic coordinates for organic molecules , 1990 .

[92]  J C Baber,et al.  Predicting synthetic accessibility: application in drug discovery and development. , 2004, Mini reviews in medicinal chemistry.

[93]  Dimitris K Agrafiotis,et al.  SAR maps: a new SAR visualization technique for medicinal chemists. , 2007, Journal of medicinal chemistry.

[94]  Hans-Joachim Böhm,et al.  The computer program LUDI: A new method for the de novo design of enzyme inhibitors , 1992, J. Comput. Aided Mol. Des..

[95]  Antony J. Williams,et al.  A perspective of publicly accessible/open-access chemistry databases. , 2008, Drug discovery today.

[96]  Jean-Louis Reymond,et al.  Virtual Exploration of the Chemical Universe up to 11 Atoms of C, N, O, F: Assembly of 26.4 Million Structures (110.9 Million Stereoisomers) and Analysis for New Ring Systems, Stereochemistry, Physicochemical Properties, Compound Classes, and Drug Discovery , 2007, J. Chem. Inf. Model..

[97]  Thomas Lengauer,et al.  A fast flexible docking method using an incremental construction algorithm. , 1996, Journal of molecular biology.

[98]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. , 2001, Advanced drug delivery reviews.

[99]  Markus A Lill,et al.  Multi-dimensional QSAR in drug discovery. , 2007, Drug discovery today.

[100]  Bin Chen,et al.  Gaining Insight into Off-Target Mediated Effects of Drug Candidates with a Comprehensive Systems Chemical Biology Analysis , 2009, J. Chem. Inf. Model..

[101]  Patrick Marichal,et al.  Data reduction and representation in drug discovery. , 2007, Drug discovery today.

[102]  Andrew Smellie General Purpose Interactive Physico-Chemical Property Exploration , 2007, J. Chem. Inf. Model..

[103]  R. Clark Prospective ligand- and target-based 3D QSAR: state of the art 2008. , 2009, Current topics in medicinal chemistry.

[104]  H. L. Morgan The Generation of a Unique Machine Description for Chemical Structures-A Technique Developed at Chemical Abstracts Service. , 1965 .

[105]  Ajay N. Jain Bias, reporting, and sharing: computational evaluations of docking methods , 2008, J. Comput. Aided Mol. Des..

[106]  W. L. Jorgensen,et al.  CAMEO: a program for the logical prediction of the products of organic reactions , 1990 .

[107]  Jonathan W. Essex,et al.  Bringing Chemical Data onto the Semantic Web , 2006, J. Chem. Inf. Model..

[108]  Jürgen Bajorath,et al.  Chemoinformatics : concepts, methods, and tools for drug discovery , 2004 .

[109]  Stephen R. Johnson,et al.  The Trouble with QSAR (or How I Learned To Stop Worrying and Embrace Fallacy) , 2008, J. Chem. Inf. Model..

[110]  A. Peter Johnson,et al.  CLiDE Pro: The Latest Generation of CLiDE, a Tool for Optical Chemical Structure Recognition , 2009, J. Chem. Inf. Model..

[111]  Peter Willett,et al.  Chemoinformatics Research at the University of Sheffield: A History and Citation Analysis , 2003, J. Inf. Sci..

[112]  Sophia Ananiadou,et al.  Text mining and its potential applications in systems biology. , 2006, Trends in biotechnology.

[113]  Paola Gramatica,et al.  Validated QSAR Prediction of OH Tropospheric Degradation of VOCs: Splitting into Training-Test Sets and Consensus Modeling , 2004, J. Chem. Inf. Model..

[114]  Igor V. Filippov,et al.  Optical Structure Recognition Software To Recover Chemical Information: OSRA, An Open Source Solution , 2009, J. Chem. Inf. Model..

[115]  Niklas Blomberg,et al.  Design of compound libraries for fragment screening , 2009, J. Comput. Aided Mol. Des..

[116]  P. Hawkins,et al.  Comparison of shape-matching and docking as virtual screening tools. , 2007, Journal of medicinal chemistry.

[117]  T. Kennedy Managing the drug discovery/development interface , 1997 .

[118]  Markus Wagener,et al.  Potential Drugs and Nondrugs: Prediction and Identification of Important Structural Features , 2000, J. Chem. Inf. Comput. Sci..

[119]  Alfonso Valencia,et al.  Text-mining approaches in molecular biology and biomedicine. , 2005, Drug discovery today.

[120]  Mark T. D. Cronin,et al.  Predicting Chemical Toxicity and Fate , 2004 .

[121]  Robert D. Clark,et al.  Managing bias in ROC curves , 2008, J. Comput. Aided Mol. Des..

[122]  Peter Willett,et al.  Maximum common subgraph isomorphism algorithms for the matching of chemical structures , 2002, J. Comput. Aided Mol. Des..

[123]  Naomi L Kruhlak,et al.  Combined Use of MC4PC, MDL-QSAR, BioEpisteme, Leadscope PDM, and Derek for Windows Software to Achieve High-Performance, High-Confidence, Mode of Action–Based Predictions of Chemical Carcinogenesis in Rodents , 2008, Toxicology mechanisms and methods.

[124]  Osman F. Güner,et al.  Pharmacophore perception, development, and use in drug design , 2000 .

[125]  Anthony Nicholls,et al.  What do we know and when do we know it? , 2008, J. Comput. Aided Mol. Des..

[126]  Klaus-Robert Müller,et al.  A Probabilistic Approach to Classifying Metabolic Stability , 2008, J. Chem. Inf. Model..

[127]  Thierry Langer,et al.  Molecule-pharmacophore superpositioning and pattern matching in computational drug design. , 2008, Drug discovery today.

[128]  Rajarshi Guha,et al.  Assessing How Well a Modeling Protocol Captures a Structure-Activity Landscape , 2008, J. Chem. Inf. Model..

[129]  Dimitris K. Agrafiotis,et al.  Enhanced SAR Maps: Expanding the Data Rendering Capabilities of a Popular Medicinal Chemistry Tool , 2009, J. Chem. Inf. Model..

[130]  Yvonne C. Martin,et al.  ALADDIN: An integrated tool for computer-assisted molecular design and pharmacophore recognition from geometric, steric, and substructure searching of three-dimensional molecular structures , 1989, J. Comput. Aided Mol. Des..

[131]  John J. Irwin,et al.  Community benchmarks for virtual screening , 2008, J. Comput. Aided Mol. Des..

[132]  A. Tropsha,et al.  Beware of q2! , 2002, Journal of molecular graphics & modelling.

[133]  Peter Willett,et al.  Selection of screens for three-dimensional substructure searching , 1990 .

[134]  Holger Claussen,et al.  Second-generation de novo design: a view from a medicinal chemist perspective , 2009, J. Comput. Aided Mol. Des..

[135]  Wendy A. Warr,et al.  Social software: fun and games, or business tools? , 2008, J. Inf. Sci..

[136]  P. Sprague Automated chemical hypothesis generation and database searching with Catalyst , 1995 .

[137]  Lee Harland,et al.  Lowering industry firewalls: pre-competitive informatics initiatives in drug discovery , 2009, Nature Reviews Drug Discovery.

[138]  C. Gregory,et al.  Chapter V.3. Databases of Chemical Structures , 2008 .

[139]  Egon L. Willighagen,et al.  The Blue Obelisk—Interoperability in Chemical Informatics , 2006, J. Chem. Inf. Model..

[140]  Roderick E. Hubbard,et al.  Lessons for fragment library design: analysis of output from multiple screening campaigns , 2009, J. Comput. Aided Mol. Des..

[141]  Yvonne C. Martin,et al.  A fast new approach to pharmacophore mapping and its application to dopaminergic and benzodiazepine agonists , 1993, J. Comput. Aided Mol. Des..

[142]  Andreas Zell,et al.  Locating Biologically Active Compounds in Medium-Sized Heterogeneous Datasets by Topological Autocorrelation Vectors: Dopamine and Benzodiazepine Agonists , 1996, J. Chem. Inf. Comput. Sci..

[143]  David A. Winkler,et al.  The role of quantitative structure-activity relationships (QSAR) in biomolecular discovery , 2002, Briefings Bioinform..

[144]  G. Klebe,et al.  Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. , 1994, Journal of medicinal chemistry.

[145]  John Bradshaw,et al.  The Effectiveness of Reactant Pools for Generating Structurally-Diverse Combinatorial Libraries , 1997, J. Chem. Inf. Comput. Sci..

[146]  Peter Willett,et al.  From chemical documentation to chemoinformatics: 50 years of chemical information science , 2008, J. Inf. Sci..

[147]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..

[148]  Yang Liu,et al.  Route Designer: A Retrosynthetic Analysis Tool Utilizing Automated Retrosynthetic Rule Generation , 2009, J. Chem. Inf. Model..

[149]  H. Kubinyi,et al.  A scoring scheme for discriminating between drugs and nondrugs. , 1998, Journal of medicinal chemistry.

[150]  José L. Medina-Franco,et al.  Characterization of Activity Landscapes Using 2D and 3D Similarity Methods: Consensus Activity Cliffs , 2009, J. Chem. Inf. Model..

[151]  Qiang Zhang,et al.  Scaffold hopping through virtual screening using 2D and 3D similarity descriptors: ranking, voting, and consensus scoring. , 2006, Journal of medicinal chemistry.

[152]  John M. Barnard,et al.  Chemical Similarity Searching , 1998, J. Chem. Inf. Comput. Sci..

[153]  Robert J. Jilek,et al.  Topomers: A Validated Protocol for Their Self-Consistent Generation , 2004, J. Chem. Inf. Model..

[154]  Diane Joseph-McCarthy Challenges of fragment screening , 2009, J. Comput. Aided Mol. Des..

[155]  Ajay N. Jain,et al.  Recommendations for evaluation of computational methods , 2008, J. Comput. Aided Mol. Des..

[156]  P. Willett,et al.  Pharmacophoric pattern matching in files of 3d chemical structures: comparison of geometric searching algorithms , 1987 .

[157]  William Lingran Chen,et al.  Chemoinformatics: Past, Present, and Future† , 2006, J. Chem. Inf. Model..

[158]  Christian Blaschke,et al.  Status of text-mining techniques applied to biomedical text. , 2006, Drug discovery today.

[159]  E J Corey,et al.  Computer-assisted design of complex organic syntheses. , 1969, Science.

[160]  John M. Barnard A comparison of different approaches to Markush structure handling , 1991, J. Chem. Inf. Comput. Sci..

[161]  Andrew R. Leach,et al.  A comparison of the pharmacophore identification programs: Catalyst, DISCO and GASP , 2002, J. Comput. Aided Mol. Des..

[162]  J. Irwin,et al.  Benchmarking sets for molecular docking. , 2006, Journal of medicinal chemistry.

[163]  M. Congreve,et al.  A 'rule of three' for fragment-based lead discovery? , 2003, Drug discovery today.

[164]  Valerie J. Gillet,et al.  Generation of multiple pharmacophore hypotheses using multiobjective optimisation techniques , 2004, J. Comput. Aided Mol. Des..

[165]  R. Cramer,et al.  Topomer CoMFA: a design methodology for rapid lead optimization. , 2003, Journal of medicinal chemistry.

[166]  D. Banville Mining chemical structural information from the drug literature. , 2006, Drug discovery today.

[167]  Johann Gasteiger,et al.  Ligand-Based Models for the Isoform Specificity of Cytochrome P450 3A4, 2D6, and 2C9 Substrates , 2007, J. Chem. Inf. Model..

[168]  Johann Gasteiger,et al.  Assessing Similarity and Diversity of Combinatorial Libraries by Spatial Autocorrelation Functions and Neural Networks , 1996 .

[169]  G. Bemis,et al.  The properties of known drugs. 1. Molecular frameworks. , 1996, Journal of medicinal chemistry.

[170]  Manuela Pavan,et al.  Review of QSAR Models for Ready Biodegradation , 2006 .

[171]  Valerie J. Gillet,et al.  Incorporating partial matches within multiobjective pharmacophore identification , 2006, J. Comput. Aided Mol. Des..

[172]  P Willett,et al.  Development and validation of a genetic algorithm for flexible docking. , 1997, Journal of molecular biology.

[173]  Carlos A.M. Fraga,et al.  Molecular Design: Concepts and Applications , 2008 .

[174]  Tudor I. Oprea,et al.  Systems chemical biology. , 2007 .

[175]  Philip N. Judson,et al.  Using Absolute and Relative Reasoning in the Prediction of the Potential Metabolism of Xenobiotics , 2003, J. Chem. Inf. Comput. Sci..

[176]  Huafeng Xu,et al.  A self-organizing principle for learning nonlinear manifolds , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[177]  W. L. Jorgensen The Many Roles of Computation in Drug Discovery , 2004, Science.

[178]  Jeremy G Frey,et al.  The value of the Semantic Web in the laboratory. , 2009, Drug discovery today.

[179]  C. Gregory Paris,et al.  Chemical Structure Handling by Computer. , 1997 .

[180]  Karen N. Allen,et al.  An Experimental Approach to Mapping the Binding Surfaces of Crystalline Proteins , 1996 .

[181]  Z. Deng,et al.  Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein-ligand binding interactions. , 2004, Journal of medicinal chemistry.

[182]  Arthur M. Doweyko,et al.  3D-QSAR illusions , 2004, J. Comput. Aided Mol. Des..

[183]  Johann Gasteiger,et al.  Structure and reaction based evaluation of synthetic accessibility , 2007, J. Comput. Aided Mol. Des..

[184]  Lorenz C. Blum,et al.  970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. , 2009, Journal of the American Chemical Society.

[185]  J. Bajorath,et al.  SAR index: quantifying the nature of structure-activity relationships. , 2007, Journal of medicinal chemistry.

[186]  H. Kubinyi,et al.  Three-dimensional quantitative similarity-activity relationships (3D QSiAR) from SEAL similarity matrices. , 1998, Journal of medicinal chemistry.

[187]  William L. Jorgensen,et al.  QSAR/QSPR and Proprietary Data , 2006, Journal of Chemical Information and Modeling.

[188]  T Abshear,et al.  A model validation and consensus building environment , 2006, SAR and QSAR in environmental research.

[189]  Ben Shneiderman,et al.  Tree visualization with tree-maps: 2-d space-filling approach , 1992, TOGS.

[190]  Peter T. Corbett,et al.  Semantic enrichment of journal articles using chemical named entity recognition , 2007, ACL.

[191]  Dimitris K. Agrafiotis,et al.  Stochastic proximity embedding , 2003, J. Comput. Chem..

[192]  Henry S Rzepa,et al.  Enhancement of the chemical semantic web through the use of InChI identifiers. , 2005, Organic & biomolecular chemistry.

[193]  Andrew R. Leach,et al.  Molecular Complexity and Its Impact on the Probability of Finding Leads for Drug Discovery , 2001, J. Chem. Inf. Comput. Sci..

[194]  Yvonne C. Martin,et al.  The Information Content of 2D and 3D Structural Descriptors Relevant to Ligand-Receptor Binding , 1997, J. Chem. Inf. Comput. Sci..

[195]  Richard A. Lewis,et al.  Three-dimensional pharmacophore methods in drug discovery. , 2010, Journal of medicinal chemistry.

[196]  P. Leeson,et al.  The influence of drug-like concepts on decision-making in medicinal chemistry , 2007, Nature Reviews Drug Discovery.

[197]  Peter Willett,et al.  Alignment of three-dimensional molecules using an image recognition algorithm. , 2004, Journal of molecular graphics & modelling.

[198]  Romualdo Benigni,et al.  Quantitative Structure-Activity Relationship (QSAR) Models of Mutagens and Carcinogens , 2003 .

[199]  Peter Willett,et al.  Pharmacophoric pattern matching in files of 3-D chemical structures: election of interatomic distance screens , 1986 .

[200]  Scott Boyer,et al.  Reaction Site Mapping of Xenobiotic Biotransformations , 2007, J. Chem. Inf. Model..

[201]  Bohdan Waszkowycz,et al.  Towards improving compound selection in structure-based virtual screening. , 2008, Drug discovery today.

[202]  Sean Ekins,et al.  Computational mapping tools for drug discovery. , 2009, Drug discovery today.

[203]  William L Jorgensen,et al.  From docking false-positive to active anti-HIV agent. , 2007, Journal of medicinal chemistry.

[204]  William L Jorgensen,et al.  Efficient drug lead discovery and optimization. , 2009, Accounts of chemical research.

[205]  Judith C. Madden,et al.  Consensus QSAR Models: Do the Benefits Outweigh the Complexity? , 2007, J. Chem. Inf. Model..

[206]  A. Johnson,et al.  Molecular complexity analysis of de novo designed ligands. , 2006, Journal of medicinal chemistry.

[207]  Kazuhiro Saitou,et al.  Automated extraction of chemical structure information from digital raster images , 2009, Chemistry Central journal.

[208]  Stuart L. Schreiber,et al.  Chemical biology : from small molecules to systems biology and drug design , 2007 .

[209]  Christopher W Murray,et al.  Fragment-based lead discovery: leads by design. , 2005, Drug discovery today.

[210]  D C Spellmeyer,et al.  Measuring diversity: experimental design of combinatorial libraries for drug discovery. , 1995, Journal of medicinal chemistry.

[211]  F. H. Allen,et al.  Cambridge Crystallographic Data Centre. II. Structural Data File , 1973 .

[212]  P. Hajduk,et al.  A decade of fragment-based drug design: strategic advances and lessons learned , 2007, Nature Reviews Drug Discovery.

[213]  Peter Willett,et al.  Similarity-based virtual screening using 2D fingerprints. , 2006, Drug discovery today.

[214]  Paola Gramatica,et al.  Principles of QSAR models validation: internal and external , 2007 .

[215]  Thomas Engel,et al.  Basic Overview of Chemoinformatics , 2006, J. Chem. Inf. Model..