Recent advances in solid sorbents for CO2 capture and new development trends

Carbon dioxide (CO2) capture using solid sorbents has been recognized as a very promising technology that has attracted intense attention from both academic and industrial fields in the last decade. It is astonishing that around 2000 papers have been published from 2011 to 2014 alone, which is less than three years after our first review paper in this journal on solid CO2 sorbents was published. In this short period, much progress has been made and the major research focus has more or less changed. Therefore, we feel that it is necessary to give a timely update on solid CO2 capture materials, although we still have to keep some important literature results published in the past years so as to keep the good continuity. We believe this work will benefit researchers working in both academic and industrial areas. In this paper, we still organize the CO2 sorbents according to their working temperatures by classifying them as such: (1) low-temperature ( 400 °C). Since the sorption capacity, kinetics, recycling stability and cost are important parameters when evaluating a sorbent, these features will be carefully considered and discussed. In addition, due to the huge amounts of cost-effective CO2 sorbents demanded and the importance of waste resources, solid CO2 sorbents prepared from waste resources and their performance are reviewed. Finally, the techno-economic assessments of various CO2 sorbents and technologies in real applications are briefly discussed.

[1]  Andrew I. Cooper,et al.  Hypercrosslinked organic polymer networks as potential adsorbents for pre-combustion CO2 capture , 2011 .

[2]  Vasilije Manovic,et al.  Post-combustion CO2 capture by formic acid-modified CaO-based sorbents , 2013 .

[3]  Nathaniel L Rosi,et al.  Design and preparation of a core-shell metal-organic framework for selective CO2 capture. , 2013, Journal of the American Chemical Society.

[4]  Bo-Geng Li,et al.  Preparation and CO2 Sorption/Desorption of N-(3-Aminopropyl)Aminoethyl Tributylphosphonium Amino Acid Salt Ionic Liquids Supported into Porous Silica Particles , 2012 .

[5]  Borja Arias,et al.  Development of low-cost biomass-based adsorbents for postcombustion CO2 capture , 2009 .

[6]  Paul A. Webley,et al.  Adsorption characteristics of a fully exchanged potassium chabazite zeolite prepared from decomposition of zeolite Y , 2009 .

[7]  Paul S. Fennell,et al.  The calcium looping cycle for large-scale CO2 capture , 2010 .

[8]  Yong-Hyun Kim,et al.  Ambient carbon dioxide capture by boron-rich boron nitride nanotube. , 2011, Journal of the American Chemical Society.

[9]  Katsuhiko Ariga,et al.  Challenges and breakthroughs in recent research on self-assembly , 2008, Science and technology of advanced materials.

[10]  Paul A. Webley,et al.  Advanced adsorbents based on MgO and K2CO3 for capture of CO2 at elevated temperatures , 2011 .

[11]  Vasilije Manovic,et al.  Assessment of limestone treatment with organic acids for CO2 capture in Ca-looping cycles , 2013 .

[12]  Vicente Rives,et al.  Layered double hydroxides with the hydrotalcite-type structure containing Cu2+, Ni2+ and Al3+ , 2000 .

[13]  Da Young Min,et al.  Kinetic Expression for the Carbonation Reaction of K2CO3/ZrO2 Sorbent for CO2 Capture , 2013 .

[14]  Jian Zhang,et al.  Adjustable structure transition and improved gases (H2, CO2) adsorption property of metal-organic framework MIL-53 by encapsulation of BNHx. , 2012, Dalton transactions.

[15]  D. Sherrington,et al.  Rapid Generation and Control of Microporosity, Bimodal Pore Size Distribution, and Surface Area in Davankov-Type Hyper-Cross-Linked Resins , 2006 .

[16]  Jianwen Jiang,et al.  Upgrade of natural gas in rhozeolite-like metal–organic framework and effect of water: a computational study , 2009 .

[17]  Mircea Dincă,et al.  Investigation of the synthesis, activation, and isosteric heats of CO2 adsorption of the isostructural series of metal-organic frameworks M3(BTC)2 (M = Cr, Fe, Ni, Cu, Mo, Ru). , 2012, Dalton transactions.

[18]  Derek Creaser,et al.  CO2 adsorption on silicalite-1 and cation exchanged ZSM-5 zeolites using a step change response method , 2006 .

[19]  E Gallei,et al.  Infrared spectroscopic studies of the adsorption of carbon dioxide and the coadsorption of carbon dioxide and water on CaY- and NiY-zeolites☆ , 1976 .

[20]  Zhong Tang,et al.  CO2 capture by activated and impregnated anthracites , 2005 .

[21]  Chih-Hung Huang,et al.  A Review of CO2 Capture by Absorption and Adsorption , 2012 .

[22]  Y. S. Lin,et al.  Kinetics of carbon dioxide sorption on potassium-doped lithium zirconate , 2003 .

[23]  Ji Yun Lee,et al.  Synthesis of mesoporous magnesium oxide: Its application to CO2 chemisorption , 2010 .

[24]  Changsui Zhao,et al.  CO2 Capture Using CaO Modified with Ethanol/Water Solution during Cyclic Calcination/Carbonation , 2008 .

[25]  Xingzhen Zhou,et al.  Covalent-organic polymers for carbon dioxide capture , 2012 .

[26]  Wei Xia,et al.  Functional zeolitic-imidazolate-framework-templated porous carbon materials for CO2 capture and enhanced capacitors. , 2013, Chemistry, an Asian journal.

[27]  Oxana V. Kharissova,et al.  Recent Advances in the Synthesis, Characterization, and Applications of Fulleropyrrolidines , 2009 .

[28]  Richard D. Noble,et al.  Perspective on ionic liquids and ionic liquid membranes , 2011 .

[29]  Christopher W. Jones,et al.  Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. , 2009, ChemSusChem.

[30]  R. Mokaya,et al.  Microporous activated carbon aerogels via a simple subcritical drying route for CO2 capture and hydrogen storage , 2013 .

[31]  Manuel F. C. Pereira,et al.  Sorbents for CO2 capture from biogenesis calcium wastes , 2013 .

[32]  Tim Cockerill,et al.  Life cycle greenhouse gas assessment of a coal-fired power station with calcium looping CO2 capture and offshore geological storage , 2012 .

[33]  E. S. Sanz-Pérez,et al.  Amino functionalized mesostructured SBA-15 silica for CO2 capture: Exploring the relation between the adsorption capacity and the distribution of amino groups by TEM , 2012 .

[34]  Gary T. Rochelle,et al.  Amine Scrubbing for CO2 Capture , 2009, Science.

[35]  M. Douglas LeVan,et al.  CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange , 2006 .

[36]  Avelino Corma,et al.  Increasing the basicity and catalytic activity of hydrotalcites by different synthesis procedures , 2004 .

[37]  Asuka Fujii,et al.  Reversible Trap−Release of CO2 by Polymers Bearing DBU and DBN Moieties , 2008 .

[38]  Patrick Ryan,et al.  Separation of CO2 from CH4 using mixed-ligand metal-organic frameworks. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[39]  Bice Fubini,et al.  Vibrational and thermodynamic study of the adsorption of carbon dioxide on the zeolite Na-ZSM-5 , 2000 .

[40]  Kenji Sumida,et al.  Evaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture , 2013 .

[41]  Vasilije Manovic,et al.  Pilot-Scale Study of CO2 Capture by CaO-Based Sorbents in the Presence of Steam and SO2 , 2012 .

[42]  Robert Pfeffer,et al.  CO2 capture using particulate silica aerogel immobilized with tetraethylenepentamine , 2013 .

[43]  Soo-Jin Park,et al.  Determination of the optimal pore size for improved CO2 adsorption in activated carbon fibers. , 2013, Journal of colloid and interface science.

[44]  Perla B. Balbuena,et al.  Water Effects on Postcombustion CO2 Capture in Mg-MOF-74 , 2013 .

[45]  F. Rubiera,et al.  Application of thermogravimetric analysis to the evaluation of aminated solid sorbents for CO2 capture , 2008 .

[46]  Yongfa Diao,et al.  Regeneration dynamics of potassium-based sediment sorbents for CO2 capture , 2013, Korean Journal of Chemical Engineering.

[47]  Xiaoping Chen,et al.  TiO2-Doped K2CO3/Al2O3 Sorbents for CO2 Capture , 2014 .

[48]  Juan Carlos Abanades,et al.  Conceptual design of a hydrogen production process from natural gas with CO2 capture using a Ca–Cu chemical loop , 2012 .

[49]  Gianfranco Pacchioni,et al.  Physisorbed and chemisorbed CO2 at surface and step sites of the MgO(100) surface , 1993 .

[50]  Sung June Cho,et al.  Chabazite and zeolite 13X for CO2 capture under high pressure and moderate temperature conditions. , 2014, Chemical communications.

[51]  Naiying Du,et al.  Polymer nanosieve membranes for CO2-capture applications. , 2011, Nature materials.

[52]  Joaquín Silvestre-Albero,et al.  High-surface-area carbon molecular sieves for selective CO(2) adsorption. , 2010, ChemSusChem.

[53]  Robert Quinn,et al.  A high temperature, lithium orthosilicate based solid absorbent for post combustion CO2 capture , 2012 .

[54]  Michael Freemantle,et al.  An Introduction to Ionic Liquids , 2010 .

[55]  D. Vollath,et al.  Cation exchange rates and mobility in aluminum-doped lithium orthosilicate : high-resolution lithium-6 NMR results , 1995 .

[56]  Mietek Jaroniec,et al.  Coconut shell-based microporous carbons for CO2 capture , 2013 .

[57]  Alan L. Chaffee,et al.  Diethylenetriamine[propyl(silyl)]-Functionalized (DT) Mesoporous Silicas as CO2 Adsorbents , 2006 .

[58]  Jochen Jänchen,et al.  Water and carbon dioxide sorption properties of natural zeolites and clay minerals at martian surface temperature and pressure conditions , 2007 .

[59]  P. Pearson,et al.  Atmospheric carbon dioxide concentrations over the past 60 million years , 2000, Nature.

[60]  Mónica Alonso,et al.  Sorbent attrition in a carbonation/calcination pilot plant for capturing CO2 from flue gases , 2010 .

[61]  Eduardo M. Cuerda-Correa,et al.  Influence of morphology, porosity and crystal structure of CaCO3 precursors on the CO2 capture performance of CaO-derived sorbents , 2013 .

[62]  Douglas P. Harrison,et al.  Carbon Dioxide Capture Using Dry Sodium-Based Sorbents , 2004 .

[63]  Claes Tullin,et al.  Reaction between calcium carbonate and sulfur dioxide , 1989 .

[64]  Sung-Ho Jo,et al.  CO2 reaction characteristics of dry sorbents in fluidized reactors , 2005 .

[65]  B. F. Goodrich,et al.  Equimolar CO(2) absorption by anion-functionalized ionic liquids. , 2010, Journal of the American Chemical Society.

[66]  Tor Grande,et al.  Nanocrystalline Lithium Zirconate with Improved Kinetics for High-Temperature CO2 Capture , 2006 .

[67]  Craig M. Brown,et al.  Unconventional, highly selective CO2 adsorption in zeolite SSZ-13. , 2012, Journal of the American Chemical Society.

[68]  Fabio Montagnaro,et al.  Reactivation by water hydration of the CO2 capture capacity of a calcium looping sorbent , 2014 .

[69]  Ping Li,et al.  Zeolite Apgiia for Adsorption Based Carbon Dioxide Capture , 2013 .

[70]  B. F. Goodrich,et al.  Effect of water and temperature on absorption of CO2 by amine-functionalized anion-tethered ionic liquids. , 2011, The journal of physical chemistry. B.

[71]  Christopher W. Jones,et al.  Amine-oxide hybrid materials for acid gas separations , 2011 .

[72]  Dmitry Yu. Murzin,et al.  Capturing CO2: conventional versus ionic-liquid based technologies , 2012 .

[73]  Antonio B. Fuertes,et al.  Sustainable porous carbons with a superior performance for CO2 capture , 2011 .

[74]  Rongyue Sun,et al.  Sequential SO2/CO2 Capture of Calcium-Based Solid Waste from the Paper Industry in the Calcium Looping Process , 2012 .

[75]  R. B. Vieira,et al.  Polyethylenimine-magadiite layered silicate sorbent for CO2 capture. , 2014, Environmental science & technology.

[76]  Sang-Chul Jung,et al.  Influence of oxyfluorination on activated carbon nanofibers for CO 2 storage , 2011 .

[77]  Choong-Gon Lee,et al.  Absorption of CO2 on CaSiO3 at high temperatures , 2009 .

[78]  J. G. Carroll,et al.  Theoretical study of the defect distribution of trivalent cation impurities in MgO , 1988 .

[79]  Yoshiyuki Kawazoe,et al.  Experimental Study and Atomic Level Description of Adsorption Process of CO2 on Doped Alkaline Earth Oxides , 2012 .

[80]  Dermot O'Hare,et al.  Towards understanding, control and application of layered double hydroxide chemistry , 2006 .

[81]  Ruirui Yun,et al.  Expanded porous MOF-505 analogue exhibiting large hydrogen storage capacity and selective carbon dioxide adsorption. , 2013, Inorganic chemistry.

[82]  Imre Dékány,et al.  Clay mineral-organic interactions , 2013 .

[83]  Polycarpos Falaras,et al.  CO2 captured in zeolitic imidazolate frameworks: Raman spectroscopic analysis of uptake and host-guest interactions. , 2014, ChemSusChem.

[84]  Wei Wang,et al.  Hypercrosslinked Aromatic Heterocyclic Microporous Polymers: A New Class of Highly Selective CO2 Capturing Materials , 2012, Advanced materials.

[85]  G. Patey,et al.  Monte Carlo simulations of the adsorption of CO2 on the MgO(100) surface. , 2006, The Journal of chemical physics.

[86]  Hyung Joon Jeon,et al.  Highly Selective CO2‐Capturing Polymeric Organic Network Structures , 2012 .

[87]  Myunghyun Paik Suh,et al.  Highly selective CO(2) capture in flexible 3D coordination polymer networks. , 2009, Angewandte Chemie.

[88]  R. Siriwardane,et al.  Novel Regenerable Sodium-Based Sorbents for CO2 Capture at Warm Gas Temperatures , 2007 .

[89]  A. Matzger,et al.  Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. , 2008, Journal of the American Chemical Society.

[90]  David R. Luebke,et al.  Immobilization of amino acid ionic liquids into nanoporous microspheres as robust sorbents for CO2 capture , 2013 .

[91]  Paul S. Fennell,et al.  Improvement of Limestone-Based CO2 Sorbents for Ca Looping by HBr and Other Mineral Acids , 2013 .

[92]  Youssef Belmabkhout,et al.  Adsorption of CO2-Containing Gas Mixtures over Amine-Bearing Pore-Expanded MCM-41 Silica: Application for Gas Purification , 2010 .

[93]  Matthew Schladt Supported amine sorbents under temperature swing absorption for CO2 and moisture capture , 2007 .

[94]  Hui Min Zhao,et al.  In situ synthesis of SBA-3/cotton fiber composite materials: A hybrid device for CO2 capture , 2012 .

[95]  Sung-Ho Jo,et al.  Continuous operation of the potassium-based dry sorbent CO2 capture process with two fluidized-bed reactors , 2007 .

[96]  Aifei Wang,et al.  One-pot synthesis of highly ordered nitrogen-containing mesoporous carbon with resorcinol–urea–formaldehyde resin for CO2 capture , 2014 .

[97]  Heikki Tenhu,et al.  Imidazolium-based poly(ionic liquid)s as new alternatives for CO2 capture. , 2013, ChemSusChem.

[98]  Pen-Chi Chiang,et al.  Development of high-temperature CO2 sorbents made of CaO-based mesoporous silica , 2010 .

[99]  S. Sircar,et al.  Chemisorption of carbon dioxide on potassium-carbonate-promoted hydrotalcite. , 2007, Journal of colloid and interface science.

[100]  Zimin Nie,et al.  Magnesia-stabilized calcium oxide absorbents with improved durability for high temperature CO{sub 2} capture , 2009 .

[101]  Weidong Zhu,et al.  A citrate sol–gel method to synthesize Li2ZrO3 nanocrystals with improved CO2 capture properties , 2011 .

[102]  Abdelkrim Azzouz,et al.  Truly reversible capture of CO2 by montmorillonite intercalated with soya oil-derived polyglycerols , 2013 .

[103]  Min Chul Cha,et al.  Preparation of Microporous Polymers Based on 1,3,5-Triazine Units Showing High CO2 Adsorption Capacity , 2012 .

[104]  Junhe Yang,et al.  Polyethylenimine loaded nanoporous carbon with ultra-large pore volume for CO2 capture , 2013 .

[105]  Zhenmin Cheng,et al.  Synthesis of CaO-based sorbents through incorporation of alumina/aluminate and their CO2 capture performance , 2012 .

[106]  Christian Vogt,et al.  Nanoscale structural investigation of Cs2CO3-doped MgO sorbent for CO2 capture at moderate temperature , 2013 .

[107]  Marc Marshall,et al.  Comparison of Cu-BTC and zeolite 13X for adsorbent based CO2 separation , 2009 .

[108]  Byung-Joo Kim,et al.  Copper oxide-decorated porous carbons for carbon dioxide adsorption behaviors. , 2010, Journal of colloid and interface science.

[109]  Bo Feng,et al.  Synthesis of sintering-resistant sorbents for CO2 capture. , 2010, Environmental science & technology.

[110]  Sung-Ho Jo,et al.  Effects of water vapor pretreatment time and reaction temperature on CO(2) capture characteristics of a sodium-based solid sorbent in a bubbling fluidized-bed reactor. , 2007, Chemosphere.

[111]  Wenchuan Wang,et al.  Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. , 2009, Angewandte Chemie.

[112]  R. Ruoff,et al.  Carbon-Based Supercapacitors Produced by Activation of Graphene , 2011, Science.

[113]  Antonio B. Fuertes,et al.  N‐Doped Polypyrrole‐Based Porous Carbons for CO2 Capture , 2011 .

[114]  Feng Deng,et al.  Gas storage in porous aromatic frameworks (PAFs) , 2011 .

[115]  Borja Arias,et al.  Kinetics of Calcination of Partially Carbonated Particles in a Ca-Looping System for CO2 Capture , 2012 .

[116]  Asli Ertan,et al.  CO2 and N2 Adsorption on the Acid (HCl, HNO3, H2SO4 and H3PO4) Treated Zeolites , 2005 .

[117]  Yuhua Duan,et al.  Structural and electronic properties of Li8ZrO6 and its CO2 capture capabilities: an ab initio thermodynamic approach. , 2013, Physical chemistry chemical physics : PCCP.

[118]  José Ortiz-Landeros,et al.  Microstructural and CO2 chemisorption analyses of Li4SiO4: Effect of surface modification by the ball milling process , 2013 .

[119]  Luciaan Boels,et al.  The crucial role of the K+-aluminium oxide interaction in K+-promoted alumina- and hydrotalcite-based materials for CO2 sorption at high temperatures. , 2008, ChemSusChem.

[120]  Liang Chen,et al.  Polyethyleneimine Incorporated Metal-Organic Frameworks Adsorbent for Highly Selective CO2 Capture , 2013, Scientific Reports.

[121]  S. Sjostrom,et al.  Investigation of Porous Silica Supported Mixed-Amine Sorbents for Post-Combustion CO2 Capture , 2012 .

[122]  Ke Wang,et al.  Efficient CO2 capture on low-cost silica gel modified by polyethyleneimine , 2012 .

[123]  T. I. Makarova,et al.  Mechanochemical interaction of alkali metal metasilicates with carbon dioxide: 1. Absorption of CO2 and phase formation , 2008 .

[124]  Can Li,et al.  Hydrolysis controlled synthesis of amine-functionalized hollow ethane–silica nanospheres as adsorbents for CO2 capture , 2012 .

[125]  A. Sayari,et al.  Applications of Pore-Expanded Mesoporous Silica. 5. Triamine Grafted Material with Exceptional CO2 Dynamic and Equilibrium Adsorption Performance , 2007 .

[126]  Paul S. Fennell,et al.  Morphological Changes of Limestone Sorbent Particles during Carbonation/Calcination Looping Cycles in a Thermogravimetric Analyzer (TGA) and Reactivation with Steam , 2010 .

[127]  Liang-Shih Fan,et al.  Investigation of High-Temperature Steam Hydration of Naturally Derived Calcium Oxide for Improved Carbon Dioxide Capture Capacity over Multiple Cycles , 2012 .

[128]  Won Suk Chang,et al.  One-Step Synthesis of PEG-Coated Gold Nanoparticles by Rapid Microwave Heating , 2013 .

[129]  Qian Liu,et al.  Highly porous nitrogen-doped polyimine-based carbons with adjustable microstructures for CO2 capture , 2013 .

[130]  Xiaoping Chen,et al.  CO2 uptake of modified calcium-based sorbents in a pressurized carbonation–calcination looping , 2011 .

[131]  Yuehe Lin,et al.  Synthesis and CO2 sorption properties of pure and modified lithium zirconate , 2004 .

[132]  Xiaoyan Hu,et al.  Self-assembled 3D flower-like Ni2+–Fe3+ layered double hydroxides and their calcined products , 2009, Nanotechnology.

[133]  Pan Xu,et al.  CO2 Capture Performance of CaO-Based Sorbents Prepared by a Sol–Gel Method , 2013 .

[134]  David Hopkinson,et al.  Amino acid-functionalized ionic liquid solid sorbents for post-combustion carbon capture. , 2013, ACS applied materials & interfaces.

[135]  E. J. Anthony,et al.  Carbon capture and storage update , 2014 .

[136]  Colin E. Snape,et al.  CO2 capture using some fly ash-derived carbon materials , 2005 .

[137]  Jinlong Gong,et al.  Recent advances in capture of carbon dioxide using alkali-metal-based oxides , 2011 .

[138]  Mikkel Jørgensen,et al.  The teraton challenge. A review of fixation and transformation of carbon dioxide , 2010 .

[139]  Yao Shi,et al.  Carbon dioxide capture by functionalized solid amine sorbents with simulated flue gas conditions. , 2011, Environmental science & technology.

[140]  Gang Chen,et al.  Reactivation of calcium-based sorbent by water hydration for CO2 capture , 2012 .

[141]  Nader Mahinpey,et al.  Highly Active CaO-Based Sorbents for CO2 Capture Using the Precipitation Method: Preparation and Characterization of the Sorbent Powder , 2012 .

[142]  S. H. Kim,et al.  Sodium-based dry regenerable sorbent for carbon dioxide capture from power plant flue gas , 2008 .

[143]  Shohreh Fatemi,et al.  Developed Mathematical Model for SAPO-34 Core-Shell Adsorbents in the Adsorption Process of CO2 from Natural Gas , 2014 .

[144]  Ki Bong Lee,et al.  Reversible Chemisorbents for Carbon Dioxide and Their Potential Applications , 2008 .

[145]  B. Z. Jang,et al.  Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review , 2008, Journal of Materials Science.

[146]  Tiejun Zhao,et al.  Effects of Steam Addition on the Properties of High Temperature Ceramic CO2 Acceptors , 2009 .

[147]  Changwen Hu,et al.  Bifunctional HNO3 catalytic synthesis of N-doped porous carbons for CO2 capture , 2013 .

[148]  Chuguang Zheng,et al.  Manufacture of calcium-based sorbents for high temperature cyclic CO2 capture via a sol–gel process , 2013 .

[149]  Sundara Ramaprabhu,et al.  Palladium nanoparticles decorated graphite nanoplatelets for room temperature carbon dioxide adsorption , 2012 .

[150]  Gisela Orcajo,et al.  Synthesis of a honeycomb-like Cu-based metal-organic framework and its carbon dioxide adsorption behaviour. , 2013, Dalton transactions.

[151]  Katsunori Yogo,et al.  Adsorption characteristics of carbon dioxide on organically functionalized SBA-15 , 2005 .

[152]  Hye-Min Yoo,et al.  Preparation and characterization of pitch-based nanoporous carbons for improving CO2 capture , 2014 .

[153]  Vicente Rives,et al.  Microwave-assisted reconstruction of Ni,Al hydrotalcite-like compounds , 2008 .

[154]  K. Lackner Capture of carbon dioxide from ambient air , 2009 .

[155]  Neil B. McKeown,et al.  Polymers of Intrinsic Microporosity (PIMs): High Free Volume Polymers for Membrane Applications , 2006 .

[156]  Stefano Brandani,et al.  Understanding carbon dioxide adsorption on univalent cation forms of the flexible zeolite Rho at conditions relevant to carbon capture from flue gases. , 2012, Journal of the American Chemical Society.

[157]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[158]  Jianbin Tang,et al.  Enhanced CO2 Absorption of Poly(ionic liquid)s , 2005 .

[159]  Jingping Zhang,et al.  From molecules to materials: computational design of N-containing porous aromatic frameworks for CO2 capture. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[160]  Steven M. George,et al.  Kinetics of desorption, adsorption, and surface diffusion of CO2 on MgO(100) , 1992 .

[161]  Jeffrey J. Urban,et al.  Size-dependent CO2 capture in chemically synthesized magnesium oxide nanocrystals , 2011 .

[162]  Huiling Ding,et al.  Synthesis and characterization of MOF-aminated graphite oxide composites for CO2 capture , 2013 .

[163]  Jinhui Peng,et al.  Preparation and kinetic analysis of Li4SiO4 sorbents with different silicon sources for high temperature CO2 capture , 2012 .

[164]  Peter C. Stair,et al.  FTIR study of CO2 adsorption on amine-grafted SBA-15: Elucidation of adsorbed species , 2011 .

[165]  Wei Wei,et al.  MgO/Al2O3 Sorbent for CO2 Capture , 2010 .

[166]  Chungsying Lu,et al.  CO2 capture from gas stream by zeolite 13X using a dual-column temperature/vacuum swing adsorption , 2012 .

[167]  Sundara Ramaprabhu,et al.  Polyaniline/multiwalled carbon nanotubes nanocomposite-an excellent reversible CO2 capture candidate , 2012 .

[168]  Jeffery S. Hsieh,et al.  Utilization of calcium carbonate particles from eggshell waste as coating pigments for ink-jet printing paper. , 2009, Bioresource technology.

[169]  Li Zhao,et al.  Designed Synthesis of Functionalized Two‐Dimensional Metal–Organic Frameworks with Preferential CO2 Capture , 2013 .

[170]  Borja Arias,et al.  Sulfation Performance of CaO Purges Derived from Calcium Looping CO2 Capture Systems , 2014 .

[171]  Chuguang Zheng,et al.  High temperature capture of CO2 on lithium-based sorbents from rice husk ash. , 2011, Journal of hazardous materials.

[172]  Lorenz T. Biegler,et al.  Optimization of a Pressure-Swing Adsorption Process Using Zeolite 13X for CO2 Sequestration , 2003 .

[173]  Dan Hancu,et al.  Green processing using ionic liquids and CO2 , 1999, Nature.

[174]  Marta G. Plaza,et al.  Evaluation of ammonia modified and conventionally activated biomass based carbons as CO2 adsorbents in postcombustion conditions , 2011 .

[175]  Yuxia Kong,et al.  Synthesis, characterization, and CO2 capture study of micro-nano carbonaceous composites. , 2013, The Science of the total environment.

[176]  Chang-Keun Yi,et al.  Tetraethylenepentamine embedded zeolite A for carbon dioxide adsorption. , 2013, Journal of nanoscience and nanotechnology.

[177]  Chien Cheng Li,et al.  Cyclic performance of CaCO3@mSiO2 for CO2 capture in a calcium looping cycle , 2014 .

[178]  Sung-Ho Jo,et al.  CO2 capture characteristics of dry sorbents in a fast fluidized reactor , 2006 .

[179]  Jason E. Bara,et al.  Synthesis and light gas separations in cross-linked gemini room temperature ionic liquid polymer membranes , 2008 .

[180]  Zhong-Zhen Yu,et al.  Vacuum-assisted synthesis of graphene from thermal exfoliation and reduction of graphite oxide , 2011 .

[181]  Timothy E. Fout,et al.  Advances in CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program ☆ , 2008 .

[182]  Julia S. Higgins,et al.  Characterization and CO2 sorption behaviour of polystyrene/polycarbonate blend system , 1997 .

[183]  Liang-Shih Fan,et al.  Activation Strategies for Calcium-Based Sorbents for CO2 Capture: A Perspective , 2012 .

[184]  Hideto Matsuyama,et al.  CO2 separation facilitated by task-specific ionic liquids using a supported liquid membrane , 2008 .

[185]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[186]  Ching-Tsung Yu,et al.  Hydrothermal preparation of calcium–aluminum carbonate sorbent for high-temperature CO2 capture in fixed-bed reactor , 2014 .

[187]  Jun Zhang,et al.  Capture of CO2 from flue gas streams with zeolite 13X by vacuum-pressure swing adsorption , 2008 .

[188]  André Faaij,et al.  Techno-economic performance and challenges of applying CO2 capture in the industry: A case study of five industrial plants , 2013 .

[189]  Young Gun Ko,et al.  Amines immobilized double-walled silica nanotubes for CO2 capture. , 2013, Journal of hazardous materials.

[190]  Esat Alpay,et al.  High Temperature Recovery of CO2 from Flue Gases Using Hydrotalcite Adsorbent , 2001 .

[191]  K. Essaki,et al.  Influence of temperature and CO2 concentration on the CO2 absorption properties of lithium silicate pellets , 2005 .

[192]  Sukumar Devotta,et al.  Monoethanol Amine Modified Zeolite 13X for CO2 Adsorption at Different Temperatures , 2007 .

[193]  Sushant Agarwal,et al.  Nanoclay-Based Solid Sorbents for CO2 Capture , 2013 .

[194]  Victor Lara,et al.  THERMAL BEHAVIOR AND CO2 ABSORPTION OF LI2-XNAXZRO3 SOLID SOLUTIONS , 2007 .

[195]  Soo-Jin Park,et al.  Influence of Amine Grafting on Carbon Dioxide Adsorption Behaviors of Activated Carbons , 2011 .

[196]  Yulong Ding,et al.  Equilibria and kinetics of CO2 adsorption on hydrotalcite adsorbent , 2000 .

[197]  Pradip B. Sarawade,et al.  Shape- and Morphology-Controlled Sustainable Synthesis of Cu, Co, and In Metal Organic Frameworks with High CO2 Capture Capacity , 2013 .

[198]  Perla B. Balbuena,et al.  A versatile metal-organic framework for carbon dioxide capture and cooperative catalysis. , 2012, Chemical communications.

[199]  B. Arias,et al.  Biomass Combustion with in Situ CO2 Capture by CaO. II. Experimental Results , 2011 .

[200]  Feng Li,et al.  Evolution of structure and performance of Cu-based layered double hydroxides , 2010 .

[201]  F. Rubiera,et al.  Developing activated carbon adsorbents for pre-combustion CO2 capture , 2009 .

[202]  Bingyun Li,et al.  CO2 capture properties of lithium silicates with different ratios of Li2O/SiO2: an ab initio thermodynamic and experimental approach. , 2013, Physical chemistry chemical physics : PCCP.

[203]  Xiaoping Chen,et al.  Effect of crystal structure on CO2 capture characteristics of dry potassium-based sorbents. , 2009, Chemosphere.

[204]  Young Min Jo,et al.  Adsorption of Low-Level CO2 Using Modified Zeolites and Activated Carbon , 2012 .

[205]  Ying Wang,et al.  Fabrication of Hierarchical Channel Wall in Al-MCM-41 Mesoporous Materials to Enhance Their Adsorptive Capability: Why and How? , 2010 .

[206]  Bruce G. Miller,et al.  Novel Polyethylenimine-Modified Mesoporous Molecular Sieve of MCM-41 Type as High-Capacity Adsorbent for CO2 Capture , 2002 .

[207]  Marta G. Plaza,et al.  Developing almond shell-derived activated carbons as CO2 adsorbents , 2010 .

[208]  Liang-Shih Fan,et al.  Synthesis and Regeneration of Sustainable CaO Sorbents from Chicken Eggshells for Enhanced Carbon Dioxide Capture , 2013 .

[209]  Nobuo Iyi,et al.  Topochemical synthesis of monometallic (Co2+-Co3+) layered double hydroxide and its exfoliation into positively charged Co(OH)2 nanosheets. , 2008, Angewandte Chemie.

[210]  Ying Zheng,et al.  Development and Performance of CaO/La2O3 Sorbents during Calcium Looping Cycles for CO2 Capture , 2010 .

[211]  Cheng Lei,et al.  Synthesis of hierarchical porous carbon monoliths with incorporated metal-organic frameworks for enhancing volumetric based CO₂ capture capability. , 2012, ACS applied materials & interfaces.

[212]  Yee Soong,et al.  Thermal and Chemical Stability of Regenerable Solid Amine Sorbent for CO2 Capture , 2006 .

[213]  Arturo J. Hernández-Maldonado,et al.  Sr2+–SAPO-34 Prepared via Coupled Partial Detemplation and Solid State Ion Exchange: Effect on Textural Properties and Carbon Dioxide Adsorption , 2011 .

[214]  P. Lan,et al.  Synthesis of a Porous Nano‐CaO/MgO‐Based CO2 Adsorbent , 2014 .

[215]  Juan Carlos Abanades,et al.  Undesired effects in the determination of CO2 carrying capacities of CaO during TG testing , 2014 .

[216]  Antoni W. Morawski,et al.  High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption , 2004 .

[217]  Chunshan Song,et al.  High-Capacity and Low-Cost Carbon-Based Molecular Basket Sorbent for CO2 Capture from Flue Gas , 2011 .

[218]  Jitong Wang,et al.  Carbon dioxide capture using polyethylenimine-loaded mesoporous carbons. , 2013, Journal of environmental sciences.

[219]  Carla I.C. Pinheiro,et al.  Investigation of a stable synthetic sol–gel CaO sorbent for CO2 capture , 2012 .

[220]  Trevor C. Drage,et al.  Novel lithium-based sorbents from fly ashes for CO2 capture at high temperatures , 2010 .

[221]  Yan‐Bing He,et al.  Low-temperature exfoliated graphenes: vacuum-promoted exfoliation and electrochemical energy storage. , 2009, ACS nano.

[222]  Sundara Ramaprabhu,et al.  Nanostructured polyaniline decorated graphene sheets for reversible CO2 capture , 2012 .

[223]  Monica Puccini,et al.  Alkali promoted lithium orthosilicate for CO2 capture at high temperature and low concentration , 2013 .

[224]  Masahiro Kato,et al.  Carbon dioxide absorption by lithium orthosilicate in a wide range of temperature and carbon dioxide concentrations , 2002 .

[225]  Qiang Wang,et al.  CO2 capture by solid adsorbents and their applications: current status and new trends , 2011 .

[226]  Guannan Wang,et al.  Tetraalkylammonium amino acids as functionalized ionic liquids of low viscosity. , 2008, Chemical communications.

[227]  R. Quinn,et al.  Influence of the concentration of CO2 and SO2 on the absorption of CO2 by a lithium orthosilicate-based absorbent. , 2011, Environmental science & technology.

[228]  Ying Wang,et al.  Fabrication of a new MgO/C sorbent for CO2 capture at elevated temperature , 2013 .

[229]  Fa-Qian Liu,et al.  Synthesis, characterization, and high temperature CO2 capture of new CaO based hollow sphere sorbents , 2013 .

[230]  Yan Guo,et al.  Significant improvements in CO₂ capture by pyridine-containing anion-functionalized ionic liquids through multiple-site cooperative interactions. , 2014, Angewandte Chemie.

[231]  John R. Kitchin,et al.  Effects of O2 and SO2 on the Capture Capacity of a Primary-Amine Based Polymeric CO2 Sorbent , 2013 .

[232]  Ritesh Haldar,et al.  Flexible and rigid amine-functionalized microporous frameworks based on different secondary building units: supramolecular isomerism, selective CO(2) capture, and catalysis. , 2014, Chemistry.

[233]  Marta G. Plaza,et al.  Valorisation of spent coffee grounds as CO2 adsorbents for postcombustion capture applications , 2012 .

[234]  Li Wei,et al.  Synthesis, characterization and CO2 capture of mesoporous SBA-15 adsorbents functionalized with melamine-based and acrylate-based amine dendrimers , 2014 .

[235]  J. Senker,et al.  Microporous Functionalized Triazine-Based Polyimides with High CO2 Capture Capacity , 2013 .

[236]  F. Larachi,et al.  Ionic liquids for CO2 capture—Development and progress , 2010 .

[237]  Jun Zhang,et al.  CO2 capture by adsorption: Materials and process development , 2007 .

[238]  Ningsheng Cai,et al.  Synthesis, experimental studies, and analysis of a new calcium-based carbon dioxide absorbent , 2005 .

[239]  K. M. Gupta,et al.  Ionic Liquid Membranes Supported by Hydrophobic and Hydrophilic Metal–Organic Frameworks for CO2 Capture , 2013 .

[240]  Paula Sánchez,et al.  CO2 capture in different carbon materials. , 2012, Environmental science & technology.

[241]  Jose Manuel Valverde,et al.  High and stable Co2 capture capacity of natural limestone at Ca-looping conditions by heat pretreatment and recarbonation synergy , 2014 .

[242]  S. Nguyen,et al.  De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. , 2010, Nature chemistry.

[243]  Borja Arias,et al.  Evaluation of CO2 Carrying Capacity of Reactivated CaO by Hydration , 2011 .

[244]  Joaquín Silvestre-Albero,et al.  Effect of the porous structure in carbon materials for CO2 capture at atmospheric and high-pressure , 2014 .

[245]  Xiaoping Chen,et al.  K2CO3/Al2O3 for Capturing CO2 in Flue Gas from Power Plants. Part 5: Carbonation and Failure Behavior of K2CO3/Al2O3 in the Continuous CO2 Sorption–Desorption System , 2013 .

[246]  Unni Olsbye,et al.  CO2 sorption on MgO and CaO surfaces: a comparative quantum chemical cluster study. , 2005, The journal of physical chemistry. B.

[247]  Jean M. J. Fréchet,et al.  Preparation of Size-Selective Nanoporous Polymer Networks of Aromatic Rings: Potential Adsorbents for Hydrogen Storage , 2008 .

[248]  Tim P. Comyn,et al.  Durability of CaO–CaZrO3 Sorbents for High-Temperature CO2 Capture Prepared by a Wet Chemical Method , 2014 .

[249]  Xiaoping Chen,et al.  Cyclic CO2 capture behavior of KMnO4-doped CaO-based sorbent , 2010 .

[250]  D. Azevedo,et al.  Adsorption of CO2 on nitrogen-enriched activated carbon and zeolite 13X , 2011 .

[251]  S. Bandyopadhyay,et al.  Absorption of carbon dioxide into aqueous blends of 2-amino-2-methyl-1-propanol and monoethanolamine , 2006 .

[252]  Ki Bong Lee,et al.  Graft copolymer templated synthesis of mesoporous MgO/TiO2 mixed oxide nanoparticles and their CO2 adsorption capacities , 2012 .

[253]  K. R. Seddon,et al.  Ionic liquids: a taste of the future. , 2003, Nature materials.

[254]  Tao Wang,et al.  Graphene-manganese oxide hybrid porous material and its application in carbon dioxide adsorption , 2012 .

[255]  F. Tezel,et al.  Adsorption separation of N2, O2, CO2 and CH4 gases by β-zeolite , 2007 .

[256]  Krijn P. de Jong,et al.  Support and Size Effects of Activated Hydrotalcites for Precombustion CO2 Capture , 2010 .

[257]  Xiaoliang Ma,et al.  "Molecular basket" sorbents for separation of CO(2) and H(2)S from various gas streams. , 2009, Journal of the American Chemical Society.

[258]  Zhang Zhang,et al.  Comprehensive investigation of CO2 adsorption on Mg–Al–CO3 LDH-derived mixed metal oxides , 2013 .

[259]  Lisa V. Poulikakos,et al.  Synthesis of calcium-based, Al2O3-stabilized sorbents for CO2 capture using a co-precipitation technique , 2013 .

[260]  Jianbin Tang,et al.  Poly(ionic liquid)s as new materials for CO2 absorption , 2005 .

[261]  Min Wei,et al.  Tris(8‐hydroxyquinoline‐5‐sulfonate)aluminum Intercalated Mg–Al Layered Double Hydroxide with Blue Luminescence by Hydrothermal Synthesis , 2010 .

[262]  R. T. Yang,et al.  A novel FTIR method for studying mixed gas adsorption at low concentrations: H2O and CO2 on NaX zeolite and γ-alumina , 2001 .

[263]  Wan Mohd Ashri Wan Daud,et al.  Exploring Potential Methods for Anchoring Amine Groups on the Surface of Activated Carbon for CO2 Adsorption , 2011 .

[264]  George A. Olah,et al.  CO2 capture on easily regenerable hybrid adsorbents based on polyamines and mesocellular silica foam. Effect of pore volume of the support and polyamine molecular weight , 2014 .

[265]  Christopher W. Jones,et al.  Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly. , 2008, Journal of the American Chemical Society.

[266]  Changsui Zhao,et al.  Enhancement of attrition resistance and cyclic CO2 capture of calcium-based sorbent pellets , 2013 .

[267]  M. Terrones,et al.  Marked adsorption irreversibility of graphitic nanoribbons for CO2 and H2O. , 2011, Journal of the American Chemical Society.

[268]  Thomas Filburn,et al.  Screening Test of Solid Amine Sorbents for CO2 Capture , 2008 .

[269]  Jiawei Wang,et al.  Preparation and CO2 adsorption of diamine modified montmorillonite via exfoliation grafting route , 2013 .

[270]  Qiang Wang,et al.  Synthesis of high-temperature CO2 adsorbents from organo-layered double hydroxides with markedly improved CO2 capture capacity , 2012 .

[271]  Jose Manuel Valverde,et al.  Nanosilica supported CaO: A regenerable and mechanically hard CO2 sorbent at Ca-looping conditions , 2014 .

[272]  Won-Jin Son,et al.  Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials , 2008 .

[273]  Yi Li,et al.  An N-rich metal-organic framework with an rht topology: high CO2 and C2 hydrocarbons uptake and selective capture from CH4. , 2014, Chemical communications.

[274]  Robert L. Burwell,et al.  Modified silica gels as selective adsorbents for sulphur dioxide , 1974 .

[275]  Yukishige Maezawa,et al.  Novel CO2 Absorbents Using Lithium‐Containing Oxide , 2005 .

[276]  Soo-Jin Park,et al.  Influence of nickel oxide on carbon dioxide adsorption behaviors of activated carbons , 2012 .

[277]  Monica Puccini,et al.  High-temperature and low concentration CO2 sorption on Li4SiO4 based sorbents: Study of the used silica and doping method effects , 2011 .

[278]  Ulka Sharma,et al.  Synthesis and Characterization of Mg-Al-CO3 Layered Double Hydroxide for CO2 Adsorption , 2008 .

[279]  Hyuk Jae Kwon,et al.  Elevated temperature CO2 capture on nano-structured MgO–Al2O3 aerogel: Effect of Mg/Al molar ratio , 2014 .

[280]  Xianyong Yu,et al.  Porous NbO-type metal–organic framework with inserted acylamide groups exhibiting highly selective CO2 capture , 2013 .

[281]  Ying Wang,et al.  Efficient CO2 capturer derived from as-synthesized MCM-41 modified with amine. , 2008, Chemistry.

[282]  Abdul Rahman Mohamed,et al.  Refractory dopant-incorporated CaO from waste eggshell as sustainable sorbent for CO2 capture: Experimental and kinetic studies , 2014 .

[283]  M. E. Bretado,et al.  Kinetic study and modeling of the high temperature CO2 capture by Na2ZrO3 solid absorbent , 2013 .

[284]  Daniel Maspoch,et al.  Selective CO2 Capture in Metal–Organic Frameworks with Azine-Functionalized Pores Generated by Mechanosynthesis , 2014 .

[285]  Zhu Shu,et al.  Chitosan derived nitrogen-doped microporous carbons for high performance CO2 capture , 2013 .

[286]  Soo-Jin Park,et al.  Preparation of Cu catalyst on activated carbons by electroless plating and their adsorption properties , 1999 .

[287]  Qiang Wang,et al.  Synthesis of nano-sized spherical Mg3Al–CO3 layered double hydroxide as a high-temperature CO2 adsorbent , 2013 .

[288]  Zhibing Zhang,et al.  Low viscosity amino acid ionic liquids with asymmetric tetraalkylammonium cations for fast absorption of CO2 , 2009 .

[289]  Chong Kul Ryu,et al.  The effect of water on the activation and the CO2 capture capacities of alkali metal-based sorbents , 2006 .

[290]  Heriberto Pfeiffer,et al.  TEXTURAL, STRUCTURAL, AND CO2 CHEMISORPTION EFFECTS PRODUCED ON THE LITHIUM ORTHOSILICATE BY ITS DOPING WITH SODIUM (LI4?XNAXSIO4) , 2008 .

[291]  Bo Wang,et al.  A highly stable metal- and nitrogen-doped nanocomposite derived from Zn/Ni-ZIF-8 capable of CO2 capture and separation. , 2014, Chemical communications.

[292]  Daniel Chinn,et al.  Amine-Grafted MCM-48 and Silica Xerogel as Superior Sorbents for Acidic Gas Removal from Natural Gas , 2003 .

[293]  Dimosthenis Trimis,et al.  Design and synthesis of stable supported-CaO sorbents for CO2 capture , 2014 .

[294]  W. Meng,et al.  CO2 Adsorption capacity of activated N‐doping porous carbons prepared from graphite nanofibers/polypyrrole , 2014 .

[295]  Jing Wei,et al.  A Controllable Synthesis of Rich Nitrogen‐Doped Ordered Mesoporous Carbon for CO2 Capture and Supercapacitors , 2013 .

[296]  D. Harrison The role of solids in CO2 capture: A mini review , 2005 .

[297]  Gonzalo Gonzalez,et al.  Synthesis and CO2 capture evaluation of Li2−xKxZrO3 solid solutions and crystal structure of a new lithium–potassium zirconate phase , 2007 .

[298]  Liang Zhan,et al.  Graphene‐Based Porous Silica Sheets Impregnated with Polyethyleneimine for Superior CO2 Capture , 2013, Advanced materials.

[299]  Yanwu Zhu,et al.  Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. , 2012, Nano letters.

[300]  Jun Zhang,et al.  Alkali and alkaline-earth cation exchanged chabazite zeolites for adsorption based CO2 capture , 2008 .

[301]  Vasilije Manovic,et al.  Pelletized CaO-based sorbents treated with organic acids for enhanced CO2 capture in Ca-looping cycles , 2013 .

[302]  Xinjuan Hou,et al.  AS-synthesized mesoporous silica MSU-1 modified with tetraethylenepentamine for CO2 adsorption , 2011 .

[303]  J. Poston,et al.  Adsorption of CO2 on molecular sieves and activated carbon , 2001 .

[304]  Chang Hyun Ko,et al.  Improvement of the cyclic stability of high temperature CO2 absorbent by the addition of oxygen vacancy possessing material , 2009 .

[305]  P. Fennell,et al.  Investigation into potential synergy between power generation, cement manufacture and CO2 abatement using the calcium looping cycle , 2011 .

[306]  Salvador Ordóñez,et al.  Enhancement of the CO2 Retention Capacity of Y Zeolites by Na and Cs Treatments: Effect of Adsorption Temperature and Water Treatment , 2008 .

[307]  Jing Li,et al.  MOFs for CO2 capture and separation from flue gas mixtures: the effect of multifunctional sites on their adsorption capacity and selectivity. , 2013, Chemical communications.

[308]  Heriberto Pfeiffer,et al.  Analysis of the CO2 chemisorption reaction mechanism in lithium oxosilicate (Li8SiO6): a new option for high-temperature CO2 capture , 2013 .

[309]  Silvia A. Nebra,et al.  THE USE OF BIOMASS RESIDUES IN THE BRAZILIAN SOLUBLE COFFEE INDUSTRY , 1998 .

[310]  Lourdes F. Vega,et al.  CO2 capture efficiency and carbonation/calcination kinetics of micro and nanosized particles of supercritically precipitated calcium carbonate , 2013 .

[311]  Kwang S. Kim,et al.  Synthesis of N-doped microporous carbon via chemical activation of polyindole-modified graphene oxide sheets for selective carbon dioxide adsorption , 2013, Nanotechnology.

[312]  O. Leal,et al.  Reversible adsorption of carbon dioxide on amine surface-bonded silica gel , 1995 .

[313]  Monoj Kumar Mondal,et al.  Progress and trends in CO2 capture/separation technologies: A review , 2012 .

[314]  John R. Kitchin,et al.  Evaluation of a Primary Amine-Functionalized Ion-Exchange Resin for CO2 Capture , 2012 .

[315]  Kaoru Fujimoto,et al.  FTIR spectroscopic study of carbon dioxide adsorption/desorption on magnesia/calcium oxide catalysts , 1992 .

[316]  Wan Mohd Ashri Wan Daud,et al.  Anchoring a halogenated amine on the surface of a microporous activated carbon for carbon dioxide capture , 2013 .

[317]  Bo Feng,et al.  Screening of CO2 adsorbing materials for zero emission power generation systems , 2007 .

[318]  Covadonga Pevida,et al.  Preparation of carbon dioxide adsorbents from the chemical activation of urea–formaldehyde and melamine–formaldehyde resins , 2007 .

[319]  Xiaoping Chen,et al.  Inexpensive calcium-modified potassium carbonate sorbent for CO2 capture from flue gas: Improved SO2 resistance, enhanced capacity and stability , 2014 .

[320]  Kanchan Mondal,et al.  Magnesian calcite sorbent for carbon dioxide capture , 2011, Environmental technology.

[321]  Dong Wang,et al.  Incorporating IGCC and CaO sorption-enhanced process for power generation with CO2 capture , 2012 .

[322]  John F. Davidson,et al.  Comparison of Different Natural Sorbents for Removing CO2 from Combustion Gases, as Studied in a Bench-Scale Fluidized Bed , 2008 .

[323]  Victor Rudolph,et al.  A density functional theory study on CO2 capture and activation by graphene-like boron nitride with boron vacancy , 2011 .

[324]  S. Satyapal,et al.  Performance and Properties of a Solid Amine Sorbent for Carbon Dioxide Removal in Space Life Support Applications , 2001 .

[325]  Andreas Schneemann,et al.  Directing the breathing behavior of pillared-layered metal-organic frameworks via a systematic library of functionalized linkers bearing flexible substituents. , 2012, Journal of the American Chemical Society.

[326]  Chen Zhang,et al.  Carbon dioxide adsorbent based on rich amines loaded nano-silica. , 2013, Journal of colloid and interface science.

[327]  Hani M. El‐Kaderi,et al.  Template-Free Synthesis of a Highly Porous Benzimidazole-Linked Polymer for CO2 Capture and H2 Storage , 2011 .

[328]  Marco J. Castaldi,et al.  Dispersed Calcium Oxide as a Reversible and Efficient CO2−Sorbent at Intermediate Temperatures , 2011 .

[329]  Angeliki A. Lemonidou,et al.  Development of new CaO based sorbent materials for CO2 removal at high temperature , 2008 .

[330]  Bo Feng,et al.  Overcoming the Problem of Loss-in-Capacity of Calcium Oxide in CO2 Capture , 2006 .

[331]  Junwei Lang,et al.  Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO₂ capture performance. , 2012, ACS applied materials & interfaces.

[332]  P. Harlick,et al.  Applications of Pore-Expanded Mesoporous Silica. 2. Development of a High-Capacity, Water-Tolerant Adsorbent for CO2 , 2005 .

[333]  Maohong Fan,et al.  The effect of post-processing conditions on aminosilane functionalizaiton of mesocellular silica foam for post-combustion CO2 capture , 2014 .

[334]  Alberto Marinas,et al.  Magnesium-containing mixed oxides as basic catalysts: base characterization by carbon dioxide TPD–MS and test reactions , 2004 .

[335]  Yixiang Shi,et al.  High-Performance CO2 Adsorbent from Interlayer Potassium-Promoted Stearate-Pillared Hydrotalcite Precursors , 2013 .

[336]  T. Tsuda,et al.  Amino Silica Gels Acting as a Carbon Dioxide Absorbent , 1992 .

[337]  Rajamani Krishna,et al.  Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure. , 2011, Journal of the American Chemical Society.

[338]  Donald R. Bobbitt,et al.  Role of electron-donating/withdrawing character, pH, and stoichiometry on the chemiluminescent reaction of tris(2,2'-bipyridyl)ruthenium(III) with amino acids , 1992 .

[339]  Wei Li,et al.  Synthesis of nitrogen-doped hollow carbon nanospheres for CO2 capture. , 2014, Chemical communications.

[340]  Shih-Chun Kuo,et al.  Adsorption of CO2 on Amine-Functionalized Y-Type Zeolites , 2010 .

[341]  Wei Li,et al.  Amine-tethered adsorbents based on three-dimensional macroporous silica for CO(2) capture from simulated flue gas and air. , 2014, ACS applied materials & interfaces.

[342]  S. F. Wu,et al.  Behavior of CaTiO3/Nano-CaO as a CO2 Reactive Adsorbent , 2010 .

[343]  F. Ramôa Ribeiro,et al.  Carbon dioxide in Y and ZSM-20 zeolites: Adsorption and infrared studies , 1993 .

[344]  Shuhua Li,et al.  Highly selective CO2 capture of an agw-type metal-organic framework with inserted amides: experimental and theoretical studies. , 2012, Chemical communications.

[345]  Xiang Zhu,et al.  Efficient CO₂ capture by a task-specific porous organic polymer bifunctionalized with carbazole and triazine groups. , 2014, Chemical communications.

[346]  D. Cao,et al.  Functional Group Modification of Metal–Organic Frameworks for CO2 Capture , 2012 .

[347]  Wei-Qiao Deng,et al.  Capture and conversion of CO2 at ambient conditions by a conjugated microporous polymer , 2013, Nature Communications.

[348]  Jonas Baltrusaitis,et al.  A template-free, thermal decomposition method to synthesize mesoporous MgO with a nanocrystalline framework and its application in carbon dioxide adsorption , 2010 .

[349]  Shilun Qiu,et al.  Selective adsorption of carbon dioxide by carbonized porous aromatic framework (PAF) , 2012 .

[350]  Myunghyun Paik Suh,et al.  High CO2-capture ability of a porous organic polymer bifunctionalized with carboxy and triazole groups. , 2013, Chemistry.

[351]  Annalisa Guerri,et al.  Solvent dependent synthesis of micro- and nano- crystalline phosphinate based 1D tubular MOF: structure and CO2 adsorption selectivity , 2012 .

[352]  Arne Thomas,et al.  Catalyst-free preparation of melamine-based microporous polymer networks through Schiff base chemistry. , 2009, Journal of the American Chemical Society.

[353]  Donald R Paul,et al.  Gas sorption and transport in poly(alkyl (meth)acrylate)s. II. Sorption and diffusion properties , 2001 .

[354]  Krista S. Walton,et al.  Breathing effects of CO2 adsorption on a flexible 3D lanthanide metal-organic framework , 2012 .

[355]  Xiaoliang Ma,et al.  Development of Carbon-Based “Molecular Basket” Sorbent for CO2 Capture , 2012 .

[356]  Vicente Rives,et al.  Effect of post-synthesis microwave–hydrothermal treatment on the properties of layered double hydroxides and related materials , 2010 .

[357]  Armin D. Ebner,et al.  Understanding the Adsorption and Desorption Behavior of CO2 on a K-Promoted Hydrotalcite-like Compound (HTlc) through Nonequilibrium Dynamic Isotherms , 2006 .

[358]  Shunsuke Tanaka,et al.  Adsorption of carbon dioxide and nitrogen on zeolite rho prepared by hydrothermal synthesis using 18-crown-6 ether. , 2012, Journal of colloid and interface science.

[359]  Changsui Zhao,et al.  Modified CaO-based sorbent looping cycle for CO2 mitigation , 2009 .

[360]  Sofia Calero,et al.  Functionalisation of MOF open metal sites with pendant amines for CO2 capture , 2012 .

[361]  L. Giraldo,et al.  CO2 Adsorption on Activated Carbon Honeycomb-Monoliths: A Comparison of Langmuir and Tóth Models , 2012, International journal of molecular sciences.

[362]  Enrique Lima,et al.  Lithium-sodium metazirconate solid solutions, Li2-xNaxZrO3 (0 ≤ x ≤ 2) : A hierarchical architecture , 2006 .

[363]  M. V. Gil,et al.  Production of nanoporous carbons from wood processing wastes and their use in supercapacitors and CO2 capture , 2012 .

[364]  Gisela Orcajo,et al.  Journal and Proceedings of the Royal Institute of Chemistry of Great Britain and Ireland. Part 5. 1947 , 1947 .

[365]  Yong Wang,et al.  Critical material and process issues for CO2 separation from coal-powered plants , 2009 .

[366]  Vasily E. Sharonov,et al.  Kinetics of carbon dioxide sorption by the composite material K2CO3 in Al2O3 , 2004 .

[367]  Hsunling Bai,et al.  Silica materials recovered from photonic industrial waste powder: its extraction, modification, characterization and application. , 2011, Journal of hazardous materials.

[368]  Navadol Laosiripojana,et al.  Investigation of CO2 adsorption by bagasse-based activated carbon , 2011, Korean Journal of Chemical Engineering.

[369]  Jia Guo,et al.  Effect of sulfation on CO2 capture of CaO-based sorbents during calcium looping cycle , 2014 .

[370]  Omar K Farha,et al.  Designing higher surface area metal-organic frameworks: are triple bonds better than phenyls? , 2012, Journal of the American Chemical Society.

[371]  Alírio E. Rodrigues,et al.  CO2 sorption on hydrotalcite and alkali-modified (K and Cs) hydrotalcites at high temperatures , 2008 .

[372]  Xiaoping Chen,et al.  Multiple-Cycles Behavior of K2CO3/Al2O3 for CO2 Capture in a Fluidized-Bed Reactor , 2010 .

[373]  R. Ruoff,et al.  Graphene and Graphene Oxide: Synthesis, Properties, and Applications , 2010, Advanced materials.

[374]  Jianguo Wang,et al.  Superior carbon-based CO2 adsorbents prepared from poplar anthers , 2014 .

[375]  Angel Linares-Solano,et al.  Sorbent design for CO2 capture under different flue gas conditions , 2014 .

[376]  Dermot O'Hare,et al.  One-step synthesis and AFM imaging of hydrophobic LDH monolayers. , 2006, Chemical communications.

[377]  Qiao Sun,et al.  Charge-controlled switchable CO2 capture on boron nitride nanomaterials. , 2013, Journal of the American Chemical Society.

[378]  E. Tzimas,et al.  Assessment of CO2 Capture Technologies in Cement Manufacturing Process , 2012 .

[379]  Robert H. Borgwardt,et al.  Kinetics of the reaction of sulfur dioxide with calcined limestone , 1970 .

[380]  Xuan Peng,et al.  Computer simulations for the adsorption and separation of CO2/CH4/H2/N2 gases by UMCM-1 and UMCM-2 metal organic frameworks , 2011 .

[381]  Dag Øistein Eriksen,et al.  Low temperature liquid state synthesis of lithium zirconate and its characteristics as a CO2 sorbent , 2006 .

[382]  Shahrokh Shahhosseini,et al.  Experimental and modeling of CO2 capture by dry sodium hydroxide carbonation , 2012 .

[383]  Tao Wang,et al.  Moisture swing sorbent for carbon dioxide capture from ambient air. , 2011, Environmental science & technology.

[384]  Wilhelm Schwieger,et al.  The urea method for the direct synthesis of ZnAl layered double hydroxides with nitrate as the interlayer anion , 2011 .

[385]  Francis Meunier,et al.  Experimental Investigation on CO2 Post−Combustion Capture by Indirect Thermal Swing Adsorption Using 13X and 5A Zeolites , 2008 .

[386]  Chong Kul Ryu,et al.  Novel regenerable potassium-based dry sorbents for CO2 capture at low temperatures , 2009 .

[387]  Sang Kyu Kwak,et al.  Multi-core MgO NPs@C core–shell nanospheres for selective CO2 capture under mild conditions , 2014 .

[388]  Zhi Ping Xu,et al.  Influence of Water on High-Temperature CO2 Capture Using Layered Double Hydroxide Derivatives , 2008 .

[389]  Borja Arias,et al.  Sulfation rates of cycled CaO particles in the carbonator of a Ca‐looping cycle for postcombustion CO2 capture , 2012 .

[390]  Ruud W. van den Brink,et al.  Hydrotalcite as CO2 Sorbent for Sorption-Enhanced Steam Reforming of Methane , 2006 .

[391]  Martin A. Abraham,et al.  Na2CO3-based sorbents coated on metal foil: CO2 capture performance , 2013 .

[392]  Qingming Jia,et al.  Novel Li4SiO4-based sorbents from diatomite for high temperature CO2 capture , 2013 .

[393]  Wenchuan Wang,et al.  Metal-organic frameworks with incorporated carbon nanotubes: improving carbon dioxide and methane storage capacities by lithium doping. , 2011, Angewandte Chemie.

[394]  Peng Shao,et al.  Can CO2 molecule adsorb effectively on Al-doped boron nitride single walled nanotube? , 2013 .

[395]  Peter Styring,et al.  High CO2 solubility in ionic liquids and a tetraalkylammonium-based poly(ionic liquid) , 2010 .

[396]  Chongli Zhong,et al.  A water stable metal-organic framework with optimal features for CO2 capture. , 2013, Angewandte Chemie.

[397]  David Chadwick,et al.  Graphene Oxide as Support for Layered Double Hydroxides: Enhancing the CO2 Adsorption Capacity , 2012 .

[398]  Eric J. Beckman,et al.  Thermally reversible polymeric sorbents for acid gases: CO2, SO2, and NOx , 1994 .

[399]  Zou Yong,et al.  Hydrotalcite-like compounds as adsorbents for carbon dioxide , 2002 .

[400]  Enrique Lima,et al.  Structural and thermochemical chemisorption of CO2 on Li(4+x)(Si(1-x)Al(x))O4 and Li(4-x)(Si(1-x)V(x))O4 solid solutions. , 2012, The journal of physical chemistry. A.

[401]  Muhammad Sahimi,et al.  Study of CO2 Diffusion and Adsorption on Calcined Layered Double Hydroxides: The Effect of Particle Size , 2008 .

[402]  Changsui Zhao,et al.  CO2 capture and attrition performance of CaO pellets with aluminate cement under pressurized carbonation , 2012 .

[403]  Youssef Belmabkhout,et al.  Further investigations of CO2 capture using triamine-grafted pore-expanded mesoporous silica , 2010 .

[404]  Renqiang Yang,et al.  Synthesis and characterization of functional thienyl-phosphine microporous polymers for carbon dioxide capture. , 2013, Macromolecular rapid communications.

[405]  Geert Versteeg,et al.  Structure and activity relationships for amine-based CO2 absorbents-II , 2009 .

[406]  Anthony R. West,et al.  Ionic conductivity of Li4SiO4 solid solutions in the system Li2O-Al2O3-SiO2 , 1983 .

[407]  F. Rubiera,et al.  Influence of oxidation upon the CO2 capture performance of a phenolic-resin-derived carbon , 2013 .

[408]  K. Nakagawa,et al.  New Series of Lithium Containing Complex Oxides, Lithium Silicates, for Application as a High Temperature CO2 Absorbent , 2001 .

[409]  M. Olivares-Marín,et al.  Development of adsorbents for CO2 capture from waste materials: a review , 2012 .

[410]  Chunshan Song,et al.  Sulfuric Acid Modified Bentonite as the Support of Tetraethylenepentamine for CO2 Capture , 2013 .

[411]  Akitsugu Okuwaki,et al.  Synthesis and sulfate ion-exchange properties of a hydrotalcite-like compound intercalated by chloride ions. , 2007, Journal of hazardous materials.

[412]  Hong-Cai Zhou,et al.  Recent advances in carbon dioxide capture with metal‐organic frameworks , 2012 .

[413]  Covadonga Pevida,et al.  CO2 capture by adsorption with nitrogen enriched carbons , 2007 .

[414]  R. T. Martin,et al.  Definition of Clay and Clay Mineral: Joint Report of the Aipea Nomenclature and CMS Nomenclature Committees , 1995 .

[415]  Tapas Kumar Maji,et al.  Extended phenylene based microporous organic polymers with selective carbon dioxide adsorption , 2011 .

[416]  Yan Liu,et al.  High temperature adsorption of CO2 on Mg–Al hydrotalcite: Effect of the charge compensating anions and the synthesis pH , 2011 .

[417]  L. J. Lozano,et al.  Recent advances in supported ionic liquid membrane technology , 2011 .

[418]  Stefan Kaskel,et al.  Intrinsically Microporous Poly(imide)s: Structure-Porosity Relationship Studied by Gas Sorption and X-ray Scattering , 2011 .

[419]  Andrew I. Cooper,et al.  Chemical tuning of CO2 sorption in robust nanoporous organic polymers , 2011 .

[420]  Dong-Wha Park,et al.  Surface modification of a low cost bentonite for post-combustion CO2 capture , 2013 .

[421]  Liyun Liang,et al.  Synthesis of cost-effective porous polyimides and their gas storage properties. , 2011, Chemical communications.

[422]  Chung-Sung Tan,et al.  Adsorption of CO2 onto amine-grafted mesoporous silicas , 2009 .

[423]  Hai-Long Jiang,et al.  Alkylamine-tethered stable metal-organic framework for CO(2) capture from flue gas. , 2014, ChemSusChem.

[424]  Y. Jo,et al.  Evaluation of moisture effect on low-level CO2 adsorption by ion-exchanged zeolite , 2012, Environmental technology.

[425]  Qiang Wang,et al.  Preparation and CO 2 Capture Capacity of Alkali Metal Carbonates Promoted Hydrotalcite , 2011 .

[426]  Douglas M. Ruthven,et al.  The Effect of Water on the Adsorption of CO2 and C3H8 on Type X Zeolites , 2004 .

[427]  Christopher W. Jones,et al.  Oxidative Degradation of Aminosilica Adsorbents Relevant to Postcombustion CO2 Capture , 2011 .

[428]  Christopher W. Jones,et al.  High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules , 2011 .

[429]  Ke Wang,et al.  Sustainable and hierarchical porous Enteromorpha prolifera based carbon for CO2 capture. , 2012, Journal of hazardous materials.

[430]  Robin W. Hughes,et al.  Design, Process Simulation, and Construction of an Atmospheric Dual Fluidized Bed Combustion System for In Situ CO2 Capture Using High-temperature Sorbents , 2005 .

[431]  Soo-Jin Park,et al.  Effect of exfoliation temperature on carbon dioxide capture of graphene nanoplates. , 2012, Journal of colloid and interface science.

[432]  Yuan Chun,et al.  CO2 Capture by As‐Prepared SBA‐15 with an Occluded Organic Template , 2006 .

[433]  A. Sayari,et al.  Nitrogen-Doped Carbons: Remarkably Stable Materials for CO2 Capture , 2014 .

[434]  Marta G. Plaza,et al.  Sustainable biomass-based carbon adsorbents for post-combustion CO2 capture , 2013 .

[435]  José Ortiz-Landeros,et al.  Surfactant-assisted hydrothermal crystallization of nanostructured lithium metasilicate (Li2SiO3) hollow spheres: II—Textural analysis and CO2–H2O sorption evaluation , 2011 .

[436]  Ming Zhao,et al.  A review of techno-economic models for the retrofitting of conventional pulverised-coal power plants for post-combustion capture (PCC) of CO2 , 2013 .

[437]  Andrea Ramírez,et al.  Future technological and economic performance of IGCC and FT production facilities with and without CO2 capture: Combining component based learning curve and bottom-up analysis , 2013 .

[438]  John R. Grace,et al.  Removal of CO2 by Calcium-Based Sorbents in the Presence of SO2 , 2007 .

[439]  G. Fetter,et al.  Sol-gel synthesis of hydrotalcite — like compounds , 2006 .

[440]  W. Marsden I and J , 2012 .

[441]  Zabiollah Mahdavifar,et al.  The influence of Cu-doping on aluminum nitride, silicon carbide and boron nitride nanotubes’ ability to detect carbon dioxide; DFT study , 2014 .

[442]  Vicente Rives,et al.  Synthesis, characterisation and delamination behaviour of lactate-intercalated Mg,Al-hydrotalcite-like compounds , 2008 .

[443]  Jian-lin Liu,et al.  Structural properties and reactivities of amino-modified silica fume solid sorbents for low-temperature CO2 capture , 2013 .

[444]  Ennio Macchi,et al.  CO2 capture in natural gas combined cycle with SEWGS. Part A: Thermodynamic performances , 2013 .

[445]  R. Hernández-Huesca,et al.  Adsorption equilibria and kinetics of CO2, CH4 and N2 in natural zeolites , 1999 .

[446]  Wei Zhou,et al.  Adsorption Sites and Binding Nature of CO2 in Prototypical Metal−Organic Frameworks: A Combined Neutron Diffraction and First-Principles Study , 2010 .

[447]  Andrew G. Glen,et al.  APPL , 2001 .

[448]  Vasilije Manovic,et al.  CO2 Carrying Behavior of Calcium Aluminate Pellets under High-Temperature/ High-CO2 Concentration Calcination Conditions , 2010 .

[449]  James A. Ritter,et al.  Stripping PSA cycles for CO2 recovery from flue gas at high temperature using a hydrotalcite-like adsorbent , 2006 .

[450]  Hong Jiang,et al.  Mesoporous carbon stabilized MgO nanoparticles synthesized by pyrolysis of MgCl2 preloaded waste biomass for highly efficient CO2 capture. , 2013, Environmental science & technology.

[451]  H. V. Walton,et al.  Composition of Shell Waste from Egg Breaking Plants , 1973 .

[452]  Janna V. Veselovskaya,et al.  Direct CO2 capture from ambient air using K2CO3/Y2O3 composite sorbent , 2014 .

[453]  Eric J. Beckman,et al.  Thermally reversible polymeric sorbents for acid gases. III. CO2-sorption enhancement in polymer-anchored amines , 1995 .

[454]  S. Fatemi,et al.  Study of carbon dioxide and methane equilibrium adsorption on silicoaluminophosphate-34 zeotype and T-type zeolite as adsorbent , 2013, International Journal of Environmental Science and Technology.

[455]  Sung Hyun Kim,et al.  Adsorption of Carbon Dioxide on 3-Aminopropyl-Triethoxysilane Modified Graphite Oxide , 2013 .

[456]  Heriberto Pfeiffer,et al.  Sodium metasilicate (Na2SiO3): A thermo-kinetic analysis of its CO2 chemical sorption , 2008 .

[457]  Rajamani Krishna,et al.  Carbon Dioxide Capture from Air Using Amine-Grafted Porous Polymer Networks , 2013 .

[458]  Youssef Belmabkhout,et al.  Modeling CO2 adsorption on amine-functionalized mesoporous silica: 1. A semi-empirical equilibrium model , 2010 .

[459]  A. Gil,et al.  Effect of the Si/Al ratio on the structure and surface properties of silica-alumina-pillared clays , 2005 .

[460]  Paul Scovazzo,et al.  Gas separations using non-hexafluorophosphate [PF6]− anion supported ionic liquid membranes , 2004 .

[461]  Wei Lin,et al.  One-pot synthesis of foam-like magnesia and its performance in CO2 adsorption , 2013 .

[462]  Maria Vamvakaki,et al.  Microporous polystyrene particles for selective carbon dioxide capture. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[463]  Jiří Čejka,et al.  Control of CO2 adsorption heats by the Al distribution in FER zeolites. , 2012, Physical chemistry chemical physics : PCCP.

[464]  John R. Grace,et al.  Simultaneous CO2/SO2 Capture Characteristics of Three Limestones in a Fluidized-Bed Reactor , 2006 .

[465]  Hiroyuki Hatano,et al.  Repetitive carbonation-calcination reactions of Ca-based sorbents for efficient CO2 sorption at elevated temperatures and pressures , 2003 .

[466]  A. Ghoshal,et al.  Novel pore-expanded MCM-41 for CO2 capture: synthesis and characterization. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[467]  Mohd Roslee Othman,et al.  Mg¿Al hydrotalcite coating on zeolites for improved carbon dioxide adsorption , 2006 .

[468]  Peng Mei Mei,et al.  A direct synthesis of mesoporous carbon supported MgO sorbent for CO2 capture , 2011 .

[469]  Wenchuan Wang,et al.  Multiscale simulation and modelling of adsorptive processes for energy gas storage and carbon dioxide capture in porous coordination frameworks , 2010 .

[470]  Jens Weber,et al.  Hierarchical nanoporous melamine resin sponges with tunable porosity—porosity analysis and CO2 sorption properties , 2011 .

[471]  Masahiro Kato,et al.  CO2 Absorption by Lithium Silicate at Room Temperature , 2004 .

[472]  Shou-Heng Liu,et al.  Highly Stable Amine-modified Mesoporous Silica Materials for Efficient CO2 Capture , 2010 .

[473]  M. Anbia,et al.  Development of MWCNT@MIL-101 hybrid composite with enhanced adsorption capacity for carbon dioxide , 2012 .

[474]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[475]  Mietek Jaroniec,et al.  Importance of small micropores in CO2 capture by phenolic resin-based activated carbon spheres , 2013 .

[476]  Zhong-Yong Yuan,et al.  User-friendly synthesis of nitrogen-containing polymer and microporous carbon spheres for efficient CO2 capture , 2012 .

[477]  Yi Zhao,et al.  Synthesis and CO₂ adsorption properties of molecularly imprinted adsorbents. , 2012, Environmental science & technology.

[478]  E. S. Sanz-Pérez,et al.  CO2 adsorption on branched polyethyleneimine-impregnated mesoporous silica SBA-15 , 2010 .

[479]  S. Oyama,et al.  Supported Room Temperature Ionic Liquid Membranes for CO2/CH4 Separation , 2011 .

[480]  Jitong Wang,et al.  Surfactant promoted solid amine sorbents for CO2 capture , 2012 .

[481]  Qian Yang,et al.  Recent advances in supported liquid membrane technology , 2007 .

[482]  A. Corma,et al.  Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. , 2006, Chemical reviews.

[483]  Jian-gang Lu,et al.  Membrane-based CO2 absorption into blended amine solutions , 2009 .

[484]  Almahdi A. Alhwaige,et al.  Biobased chitosan hybrid aerogels with superior adsorption: Role of graphene oxide in CO2 capture , 2013 .

[485]  D. C. Koningsberger,et al.  Influence of Si/Al Ratio on Catalytic Performance of (Co)Mo/Saponite Catalysts , 1999 .

[486]  Hsunling Bai,et al.  Facile and surfactant-free route to mesoporous silica-based adsorbents from TFT-LCD industrial waste powder for CO2 capture , 2013 .

[487]  Abdul Rahman Mohamed,et al.  Multi-walled carbon nanotubes modified with (3-aminopropyl)triethoxysilane for effective carbon dioxide adsorption , 2013 .

[488]  Xuan Peng,et al.  CNT@Cu3(BTC)2 and Metal–Organic Frameworks for Separation of CO2/CH4 Mixture , 2011 .

[489]  Philip G. Jessop,et al.  Support-Free Porous Polyamine Particles for CO2 Capture. , 2012, ACS macro letters.

[490]  Robert B. May,et al.  Easily regenerable solid adsorbents based on polyamines for carbon dioxide capture from the air. , 2014, ChemSusChem.

[491]  Robert W. Stevens,et al.  CO2 capture by amine-enriched fly ash carbon sorbents , 2004 .

[492]  C. Gauer,et al.  Doped lithium orthosilicate for absorption of carbon dioxide , 2006 .

[493]  Petr Nachtigall,et al.  Experimental and theoretical determination of adsorption heats of CO(2) over alkali metal exchanged ferrierites with different Si/Al ratio. , 2010, Physical chemistry chemical physics : PCCP.

[494]  Neil Genzlinger A. and Q , 2006 .

[495]  Jing Li,et al.  Synthesis of ordered mesoporous MgO/carbon composites by a one-pot assembly of amphiphilic triblock copolymers , 2011 .

[496]  Myunghyun Paik Suh,et al.  Selective CO2 adsorption in a metal-organic framework constructed from an organic ligand with flexible joints. , 2012, Chemical communications.

[497]  Yao Le,et al.  Fabrication and CO2 adsorption performance of bimodal porous silica hollow spheres with amine-modified surfaces , 2012 .

[498]  Stefan Kaskel,et al.  Fungi-based porous carbons for CO2 adsorption and separation , 2012 .