Inducing Sparsity and Shrinkage in Time-Varying Parameter Models

Time-varying parameter (TVP) models have the potential to be over-parameterized, particularly when the number of variables in the model is large. Global-local priors are increasingly used to induce shrinkage in such models. But the estimates produced by these priors can still have appreciable uncertainty. Sparsification has the potential to reduce this uncertainty and improve forecasts. In this paper, we develop computationally simple methods which both shrink and sparsify TVP models. In a simulated data exercise we show the benefits of our shrink-then-sparsify approach in a variety of sparse and dense TVP regressions. In a macroeconomic forecasting exercise, we find our approach to substantially improve forecast performance relative to shrinkage alone.

[1]  Dongchu Sun,et al.  Bayesian stochastic search for VAR model restrictions , 2008 .

[2]  T. Sargent,et al.  Drifts and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S. , 2003 .

[3]  T. Sargent,et al.  Drifts and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S. , 2005 .

[4]  Florian Huber,et al.  Adaptive Shrinkage in Bayesian Vector Autoregressive Models , 2019 .

[5]  Sylvia Fruhwirth-Schnatter,et al.  Achieving shrinkage in a time-varying parameter model framework , 2016, Journal of Econometrics.

[6]  E. George,et al.  Journal of the American Statistical Association is currently published by American Statistical Association. , 2007 .

[7]  Giorgio E. Primiceri Time Varying Structural Vector Autoregressions and Monetary Policy , 2002 .

[8]  A. Bhattacharya,et al.  Signal Adaptive Variable Selector for the Horseshoe Prior , 2018, 1810.09004.

[9]  Dimitris Korobilis,et al.  Variational Bayes inference in high-dimensional time-varying parameter models , 2018 .

[10]  Massimiliano Marcellino,et al.  Large Bayesian vector autoregressions with stochastic volatility and non-conjugate priors , 2019, Journal of Econometrics.

[11]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[12]  J. Griffin,et al.  Time-Varying Sparsity in Dynamic Regression Models , 2013 .

[13]  G. Malsiner‐Walli,et al.  Comparing Spike and Slab Priors for Bayesian Variable Selection , 2016, 1812.07259.

[14]  J. S. Rao,et al.  Spike and slab variable selection: Frequentist and Bayesian strategies , 2005, math/0505633.

[15]  R. Kohn,et al.  On Gibbs sampling for state space models , 1994 .

[16]  Serena Ng,et al.  Working Paper Series , 2019 .

[17]  Florian Huber,et al.  Should I stay or should I go? A latent threshold approach to large‐scale mixture innovation models , 2016, Journal of Applied Econometrics.

[18]  James G. Scott,et al.  The horseshoe estimator for sparse signals , 2010 .

[19]  E. George,et al.  APPROACHES FOR BAYESIAN VARIABLE SELECTION , 1997 .

[20]  G. Koop,et al.  Bayesian Compressed Vector Autoregressions , 2017, Journal of Econometrics.

[21]  Gregor Kastner,et al.  Dealing with Stochastic Volatility in Time Series Using the R Package stochvol , 2016, 1906.12134.

[22]  J. Griffin,et al.  Inference with normal-gamma prior distributions in regression problems , 2010 .

[23]  Enes Makalic,et al.  A Simple Sampler for the Horseshoe Estimator , 2015, IEEE Signal Processing Letters.

[24]  S. Frühwirth-Schnatter Data Augmentation and Dynamic Linear Models , 1994 .

[25]  G. Casella,et al.  The Bayesian Lasso , 2008 .

[26]  David Puelz,et al.  Variable Selection in Seemingly Unrelated Regressions with Random Predictors , 2016, 1605.08963.

[27]  C. Carvalho,et al.  Decoupling Shrinkage and Selection in Bayesian Linear Models: A Posterior Summary Perspective , 2014, 1408.0464.

[28]  Antonello D’Agostino,et al.  Macroeconomic Forecasting and Structural Change , 2009, SSRN Electronic Journal.

[29]  V. Rocková,et al.  Dynamic Variable Selection with Spike-and-Slab Process Priors , 2017, Bayesian Analysis.

[30]  B. Mallick,et al.  Bayesian sparse multiple regression for simultaneous rank reduction and variable selection. , 2016, Biometrika.

[31]  Jared S. Murray,et al.  Model Interpretation Through Lower-Dimensional Posterior Summarization , 2019, J. Comput. Graph. Stat..

[32]  Gregor Kastner,et al.  Ancillarity-sufficiency interweaving strategy (ASIS) for boosting MCMC estimation of stochastic volatility models , 2014, Comput. Stat. Data Anal..

[33]  N. Pillai,et al.  Dirichlet–Laplace Priors for Optimal Shrinkage , 2014, Journal of the American Statistical Association.

[34]  S. Frühwirth-Schnatter,et al.  Stochastic model specification search for Gaussian and partial non-Gaussian state space models , 2010 .

[35]  H. Uhlig Bayesian vector autoregressions with stochastic volatility , 1997 .

[36]  F. Diebold,et al.  Comparing Predictive Accuracy , 1994, Business Cycles.

[37]  Todd E. Clark,et al.  Large Vector Autoregressions with Stochastic Volatility and Flexible Priors , 2016 .

[38]  Jamie L. Cross,et al.  Macroeconomic forecasting with large Bayesian VARs: Global-local priors and the illusion of sparsity , 2020 .

[39]  J. Berger,et al.  Optimal predictive model selection , 2004, math/0406464.

[40]  R. Tibshirani,et al.  PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.

[41]  Dimitris Korobilis,et al.  Hierarchical Shrinkage in Time-Varying Parameter Models: Hierarchical Shrinkage in Time-Varying Parameter Models , 2014 .

[42]  C. Carvalho,et al.  Portfolio Selection for Individual Passive Investing , 2019, Applied Stochastic Models in Business and Industry.

[43]  Florian Huber,et al.  Sparse Bayesian vector autoregressions in huge dimensions , 2017, Journal of Forecasting.

[44]  C. Carvalho,et al.  Monotonic Effects of Characteristics on Returns , 2018, The Annals of Applied Statistics.

[45]  Rodney W. Strachan,et al.  Reducing the state space dimension in a large TVP-VAR , 2020, Journal of Econometrics.

[46]  Domenico Giannone,et al.  Economic Predictions with Big Data: The Illusion of Sparsity , 2017, Econometrica.

[47]  James G. Scott,et al.  Shrink Globally, Act Locally: Sparse Bayesian Regularization and Prediction , 2022 .

[48]  H. Lopes,et al.  Dynamic sparsity on dynamic regression models , 2020, 2009.14131.