Code Design for Radar STAP via Optimization Theory

In this paper, we deal with the problem of constrained code optimization for radar space-time adaptive processing (STAP) in the presence of colored Gaussian disturbance. At the design stage, we devise a code design algorithm complying with the following optimality criterion: maximization of the detection performance under a control on the regions of achievable values for the temporal and spatial Doppler estimation accuracy, and on the degree of similarity with a pre-fixed radar code. The resulting quadratic optimization problem is solved resorting to a convex relaxation that belongs to the semidefinite program (SDP) class. An optimal solution of the initial problem is then constructed through a suitable rank-one decomposition of an optimal solution of the relaxed one. At the analysis stage, we assess the performance of the new algorithm both on simulated data and on the standard challenging the Knowledge-Aided Sensor Signal Processing and Expert Reasoning (KASSPER) datacube.

[1]  Jian Li,et al.  Signal Waveform's Optimal-under-Restriction Design for Active Sensing , 2006, IEEE Signal Processing Letters.

[2]  Zhi-Quan Luo,et al.  Design of Phase Codes for Radar Performance Optimization With a Similarity Constraint , 2009, IEEE Transactions on Signal Processing.

[3]  Harry L. Van Trees,et al.  Optimum Array Processing , 2002 .

[4]  A. Nehorai,et al.  Information Theoretic Adaptive Radar Waveform Design for Multiple Extended Targets , 2007, IEEE Journal of Selected Topics in Signal Processing.

[5]  Richard Klemm,et al.  Introduction to space-time adaptive processing , 1998 .

[6]  Antonio De Maio,et al.  Code Design to Optimize Radar Detection Performance Under Accuracy and Similarity Constraints , 2008, IEEE Transactions on Signal Processing.

[7]  Mathias Friese,et al.  Polyphase Barker sequences up to length 36 , 1996, IEEE Trans. Inf. Theory.

[8]  A. De Maio,et al.  Design Principles of MIMO Radar Detectors , 2007, IEEE Transactions on Aerospace and Electronic Systems.

[9]  Harry L. Van Trees,et al.  Optimum Array Processing: Part IV of Detection, Estimation, and Modulation Theory , 2002 .

[10]  J. S. Goldstein,et al.  Multistage partially adaptive STAP CFAR detection algorithm , 1999 .

[11]  Dante C. Youla,et al.  Optimum transmit-receiver design in the presence of signal-dependent interference and channel noise , 1999, Conference Record of the Thirty-Third Asilomar Conference on Signals, Systems, and Computers (Cat. No.CH37020).

[12]  Joseph R. Guerci,et al.  Signal Waveform's Optimal Under Restriction Design for Active Sensing , 2006, SAM 2006.

[13]  R. Blahut,et al.  Radar and sonar , 1991 .

[14]  Zhi-Quan Luo,et al.  Quasi-maximum-likelihood multiuser detection using semi-definite relaxation with application to synchronous CDMA , 2002, IEEE Trans. Signal Process..

[15]  Michael C. Wicks,et al.  Novel Diverse Waveforms , 2001 .

[16]  Simon Haykin,et al.  Selected topics in signal processing , 1989 .

[17]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[18]  Alfonso Farina,et al.  Detection with high resolution radar - Great promise, big challenge , 1991 .

[19]  C.J. Baker,et al.  Frequency diverse array radars , 2006, 2006 IEEE Conference on Radar.

[20]  Joseph R. Guerci,et al.  Space-Time Adaptive Processing for Radar , 2003 .

[21]  P. Stoica,et al.  MIMO Radar Signal Processing , 2008 .

[22]  S. Kay,et al.  Optimal Signal Design for Detection of Gaussian Point Targets in Stationary Gaussian Clutter/Reverberation , 2007, IEEE Journal of Selected Topics in Signal Processing.

[23]  Amir K. Khandani,et al.  A near maximum likelihood decoding algorithm for MIMO systems based on semi-definite programming , 2005, ISIT.

[24]  M. Bell Information Theory of Radar and Sonar Waveforms , 1999 .

[25]  Mark R. Bell Information theory and radar waveform design , 1993, IEEE Trans. Inf. Theory.

[26]  Rick S. Blum,et al.  Minimax Robust MIMO Radar Waveform Design , 2007, IEEE Journal of Selected Topics in Signal Processing.

[27]  A. De Maio,et al.  Design principles of MIMO radar detectors , 2006, 2006 International Waveform Diversity & Design Conference.

[28]  M. Antweiler,et al.  Polyphase Barker sequences , 1989 .

[29]  James Ward,et al.  Space-time adaptive processing for airborne radar , 1994, 1995 International Conference on Acoustics, Speech, and Signal Processing.

[30]  Aharon Ben-Tal,et al.  Lectures on modern convex optimization , 1987 .

[31]  C.J. Baker,et al.  Multi-mission multi-mode waveform diversity , 2006, 2006 IEEE Conference on Radar.

[32]  Amir K. Khandani,et al.  A Near-Maximum-Likelihood Decoding Algorithm for MIMO Systems Based on Semi-Definite Programming , 2007, IEEE Transactions on Information Theory.

[33]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[34]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[35]  J.R. Guerci,et al.  Radar waveform optimization for colored noise mitigation , 2005, IEEE International Radar Conference, 2005..

[36]  Arye Nehorai,et al.  Introduction to the issue on adaptive waveform design for agile sensing and communication , 2007, J. Sel. Topics Signal Processing.

[37]  Shuzhong Zhang,et al.  Complex Matrix Decomposition and Quadratic Programming , 2007, Math. Oper. Res..

[38]  Calvin H. Wilcox,et al.  The Synthesis Problem for Radar Ambiguity Functions , 1991 .

[39]  J. S. Goldstein,et al.  Full-polarization matched-illumination for target detection and identification , 2002 .

[40]  David A. Shnidman MATLAB Code for Plotting Ambiguity Functions , 2002 .

[41]  R. Klemm Principles of Space-Time Adaptive Processing , 2002 .

[42]  A. Farina,et al.  Waveform Diversity: Past, Present, and Future , 2009 .

[43]  Nikos D. Sidiropoulos,et al.  Quality of Service and Max-Min Fair Transmit Beamforming to Multiple Cochannel Multicast Groups , 2008, IEEE Transactions on Signal Processing.