On a bilinear operator free third order method on Riemannian manifolds

We present a semilocal convergence analysis of a bilinear operator free third order method on Riemannian manifolds. Using a combination of generalized Lipschitz and center-Lipschitz conditions, we provide a convergence analysis which expands the applicability of the method even in the setting of nonlinear equations considered in earlier studies such as (cf. [4,9,38]).

[1]  W. Eby POMPEIU PROBLEM FOR THE HEISENBERG BALL , 2011 .

[2]  Sergio Amat,et al.  On two families of high order Newton type methods , 2012, Appl. Math. Lett..

[3]  C. Kelley A Shamanskii-Like acceleration scheme for nonlinear equations at singular roots , 1986 .

[4]  Ioannis K. Argyros,et al.  A unifying local–semilocal convergence analysis and applications for two-point Newton-like methods in Banach space , 2004 .

[5]  S. Lang Differential and Riemannian Manifolds , 1996 .

[6]  I. Argyros,et al.  Newton’s method for approximating zeros of vector fields on Riemannian manifolds , 2009 .

[7]  L. Kantorovich,et al.  Functional analysis in normed spaces , 1952 .

[8]  I. Holopainen Riemannian Geometry , 1927, Nature.

[9]  Ioannis K. Argyros,et al.  A semilocal convergence analysis for directional Newton methods , 2010, Math. Comput..

[10]  J. A. Ezquerro A modification of the Chebyshev method , 1997 .

[11]  Natalia Romero Álvarez Familias paramétricas de procesos iterativos de alto orden de convergencia , 2006 .

[12]  M. J. Rubio,et al.  Semilocal convergence of the secant method under mild convergence conditions of differentiability , 2002 .

[13]  Chong Li,et al.  Newton's method for sections on Riemannian manifolds: Generalized covariant alpha-theory , 2008, J. Complex..

[14]  Orizon Pereira Ferreira,et al.  Kantorovich's Theorem on Newton's Method in Riemannian Manifolds , 2002, J. Complex..

[15]  Chong Li,et al.  Kantorovich's theorems for Newton's method for mappings and optimization problems on Lie groups , 2011 .

[16]  Sanjay Kumar Khattri Optimal Eighth Order Iterative Methods , 2011, Math. Comput. Sci..

[17]  Ioannis K. Argyros An improved unifying convergence analysis of Newton’s method in Riemannian manifolds , 2007 .

[18]  Yitian Li,et al.  A modification of Newton method with third-order convergence , 2006, Appl. Math. Comput..

[19]  Sergio Amat,et al.  Third-order iterative methods with applications to Hammerstein equations: A unified approach , 2011, J. Comput. Appl. Math..

[20]  J. Traub Iterative Methods for the Solution of Equations , 1982 .

[21]  S. Yakowitz,et al.  Principles and procedures of numerical analysis , 1978 .

[22]  C. Udriste,et al.  Convex Functions and Optimization Methods on Riemannian Manifolds , 1994 .

[23]  Ioannis K. Argyros,et al.  Extending the applicability of Newton's method on Lie groups , 2013, Appl. Math. Comput..

[24]  Ioannis K. Argyros,et al.  Weaker conditions for the convergence of Newton's method , 2012, J. Complex..

[25]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[26]  I. Argyros Improving the order and rates of convergence for the Super-Halley method in Banach spaces , 1998 .

[27]  M. J. Rubio,et al.  A uniparametric family of iterative processes for solving nondifferentiable equations , 2002 .

[28]  S. Lang Introduction to Differentiable Manifolds , 1964 .

[29]  Sergio Amat,et al.  On a third‐order Newton‐type method free of bilinear operators , 2010, Numer. Linear Algebra Appl..

[30]  Karan P. Singh,et al.  Hyperbolastic modeling of wound healing , 2011, Math. Comput. Model..

[31]  Y. Cho,et al.  Numerical Methods for Equations and its Applications , 2012 .

[32]  Jean-Pierre Dedieu,et al.  Symplectic methods for the approximation of the exponential map and the Newton iteration on Riemannian submanifolds , 2005, J. Complex..

[33]  M. A. Hernández Second-Derivative-Free Variant of the Chebyshev Method for Nonlinear Equations , 2000 .

[34]  Chebysheff-Halley-like methods in Banach spaces , 1997 .

[35]  Ferenc Szidarovszky,et al.  Notes on the stability of dynamic economic systems , 2000, Appl. Math. Comput..

[36]  S. Amat,et al.  A two-step Steffensen's method under modified convergence conditions , 2006 .

[37]  J. A. Ezquerro,et al.  New Kantorovich‐Type Conditions for Halley's Method , 2005 .

[39]  José Antonio Ezquerro,et al.  Chebyshev-like methods and quadratic equations , 1999 .

[40]  Felipe Alvarez,et al.  A Unifying Local Convergence Result for Newton's Method in Riemannian Manifolds , 2008, Found. Comput. Math..

[41]  S. Amat,et al.  Third-order iterative methods under Kantorovich conditions , 2007 .

[42]  M. J. Legaz,et al.  On a Family of High-Order Iterative Methods under Kantorovich Conditions and Some Applications , 2012 .

[43]  I. Argyros Improved Error Bounds for a Chebysheff-Halley-Type Method , 1999 .

[44]  V. Shamanskii A modification of Newton's method , 1967 .

[45]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[46]  I. Argyros Computational Theory of Iterative Methods , 2014 .

[47]  Ioannis K. Argyros,et al.  Computational Theory of Iterative Methods, Volume 15 , 2007 .