On a bilinear operator free third order method on Riemannian manifolds
暂无分享,去创建一个
S. Amat | I. K. Argyros | S. Busquier | R. Castro | S. Hilout | S. Plaza
[1] W. Eby. POMPEIU PROBLEM FOR THE HEISENBERG BALL , 2011 .
[2] Sergio Amat,et al. On two families of high order Newton type methods , 2012, Appl. Math. Lett..
[3] C. Kelley. A Shamanskii-Like acceleration scheme for nonlinear equations at singular roots , 1986 .
[4] Ioannis K. Argyros,et al. A unifying local–semilocal convergence analysis and applications for two-point Newton-like methods in Banach space , 2004 .
[5] S. Lang. Differential and Riemannian Manifolds , 1996 .
[6] I. Argyros,et al. Newton’s method for approximating zeros of vector fields on Riemannian manifolds , 2009 .
[7] L. Kantorovich,et al. Functional analysis in normed spaces , 1952 .
[8] I. Holopainen. Riemannian Geometry , 1927, Nature.
[9] Ioannis K. Argyros,et al. A semilocal convergence analysis for directional Newton methods , 2010, Math. Comput..
[10] J. A. Ezquerro. A modification of the Chebyshev method , 1997 .
[11] Natalia Romero Álvarez. Familias paramétricas de procesos iterativos de alto orden de convergencia , 2006 .
[12] M. J. Rubio,et al. Semilocal convergence of the secant method under mild convergence conditions of differentiability , 2002 .
[13] Chong Li,et al. Newton's method for sections on Riemannian manifolds: Generalized covariant alpha-theory , 2008, J. Complex..
[14] Orizon Pereira Ferreira,et al. Kantorovich's Theorem on Newton's Method in Riemannian Manifolds , 2002, J. Complex..
[15] Chong Li,et al. Kantorovich's theorems for Newton's method for mappings and optimization problems on Lie groups , 2011 .
[16] Sanjay Kumar Khattri. Optimal Eighth Order Iterative Methods , 2011, Math. Comput. Sci..
[17] Ioannis K. Argyros. An improved unifying convergence analysis of Newton’s method in Riemannian manifolds , 2007 .
[18] Yitian Li,et al. A modification of Newton method with third-order convergence , 2006, Appl. Math. Comput..
[19] Sergio Amat,et al. Third-order iterative methods with applications to Hammerstein equations: A unified approach , 2011, J. Comput. Appl. Math..
[20] J. Traub. Iterative Methods for the Solution of Equations , 1982 .
[21] S. Yakowitz,et al. Principles and procedures of numerical analysis , 1978 .
[22] C. Udriste,et al. Convex Functions and Optimization Methods on Riemannian Manifolds , 1994 .
[23] Ioannis K. Argyros,et al. Extending the applicability of Newton's method on Lie groups , 2013, Appl. Math. Comput..
[24] Ioannis K. Argyros,et al. Weaker conditions for the convergence of Newton's method , 2012, J. Complex..
[25] M. Spivak. A comprehensive introduction to differential geometry , 1979 .
[26] I. Argyros. Improving the order and rates of convergence for the Super-Halley method in Banach spaces , 1998 .
[27] M. J. Rubio,et al. A uniparametric family of iterative processes for solving nondifferentiable equations , 2002 .
[28] S. Lang. Introduction to Differentiable Manifolds , 1964 .
[29] Sergio Amat,et al. On a third‐order Newton‐type method free of bilinear operators , 2010, Numer. Linear Algebra Appl..
[30] Karan P. Singh,et al. Hyperbolastic modeling of wound healing , 2011, Math. Comput. Model..
[31] Y. Cho,et al. Numerical Methods for Equations and its Applications , 2012 .
[32] Jean-Pierre Dedieu,et al. Symplectic methods for the approximation of the exponential map and the Newton iteration on Riemannian submanifolds , 2005, J. Complex..
[33] M. A. Hernández. Second-Derivative-Free Variant of the Chebyshev Method for Nonlinear Equations , 2000 .
[34] Chebysheff-Halley-like methods in Banach spaces , 1997 .
[35] Ferenc Szidarovszky,et al. Notes on the stability of dynamic economic systems , 2000, Appl. Math. Comput..
[36] S. Amat,et al. A two-step Steffensen's method under modified convergence conditions , 2006 .
[37] J. A. Ezquerro,et al. New Kantorovich‐Type Conditions for Halley's Method , 2005 .
[39] José Antonio Ezquerro,et al. Chebyshev-like methods and quadratic equations , 1999 .
[40] Felipe Alvarez,et al. A Unifying Local Convergence Result for Newton's Method in Riemannian Manifolds , 2008, Found. Comput. Math..
[41] S. Amat,et al. Third-order iterative methods under Kantorovich conditions , 2007 .
[42] M. J. Legaz,et al. On a Family of High-Order Iterative Methods under Kantorovich Conditions and Some Applications , 2012 .
[43] I. Argyros. Improved Error Bounds for a Chebysheff-Halley-Type Method , 1999 .
[44] V. Shamanskii. A modification of Newton's method , 1967 .
[45] Robert E. Mahony,et al. Optimization Algorithms on Matrix Manifolds , 2007 .
[46] I. Argyros. Computational Theory of Iterative Methods , 2014 .
[47] Ioannis K. Argyros,et al. Computational Theory of Iterative Methods, Volume 15 , 2007 .