Observation and output adaptive tracking for a class of nonlinear non-minimum phase systems

ABSTRACT In this paper, the output tracking problem for a class of systems with unstable zero dynamics is addressed. The state is assumed not measurable. The output of the dynamical system to be controlled has to track a signal, which is the sum of a known number of sinusoids with unknown frequencies, amplitudes and phases. The non-minimum phase nature of the considered systems prevents the direct tracking by standard sliding mode methods, which are known to generate unstable behaviours of the internal dynamics. The proposed method relies on the availability of a flat output and its time derivatives which are functions of the unavailable state; therefore, a nonlinear observer is needed. Due to the uncertainty in the frequencies and in the parameters defining the relationship between the output of the system and the flat states, adaptive indirect methods are applied.

[1]  Giorgio Bartolini,et al.  Simplex sliding mode methods for the chattering reduction control of multi-input nonlinear uncertain systems , 2009, Autom..

[2]  P. KRISHNAMURTHY,et al.  On Uniform Solvability of Parameter-Dependent Lyapunov Inequalities and Applications to Various Problems , 2006, SIAM J. Control. Optim..

[3]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[4]  Vadim I. Utkin,et al.  Sliding mode tracking control of systems with unstable zero dynamics , 1999 .

[5]  Jorge Davila,et al.  Exact Tracking Using Backstepping Control Design and High-Order Sliding Modes , 2013, IEEE Transactions on Automatic Control.

[6]  Avrie Levent,et al.  Robust exact differentiation via sliding mode technique , 1998, Autom..

[7]  Edward J. Davison,et al.  Performance limitations of non-minimum phase systems in the servomechanism problem, , 1993, Autom..

[8]  Francisco Javier Bejarano,et al.  Partial unknown input reconstruction for linear systems , 2011, Autom..

[9]  A. Krener On the Equivalence of Control Systems and the Linearization of Nonlinear Systems , 1973 .

[10]  Giorgio Bartolini,et al.  Sliding mode output-feedback stabilization of uncertain nonlinear nonaffine systems , 2012, Autom..

[11]  Giorgio Bartolini,et al.  Adaptive tracking of sinusoids with unknown frequencies for some classes of SISO non‐minimum phase systems , 2016 .

[12]  Marc Bodson,et al.  Adaptive Algorithms for the Rejection of Sinusoidal Disturbances Acting on Unknown Plants , 2010, IEEE Transactions on Control Systems Technology.

[13]  Leonid Fridman,et al.  Higher Order Sliding Mode Based Accurate Tracking of Unmatched Perturbed Outputs , 2013 .

[14]  Veit Hagenmeyer,et al.  Internal dynamics of flat nonlinear SISO systems with respect to a non-flat output , 2004, Syst. Control. Lett..

[15]  Leonid M. Fridman,et al.  Robust Control With Exact Uncertainties Compensation: With or Without Chattering? , 2011, IEEE Transactions on Control Systems Technology.

[16]  G. Bartolini,et al.  Dynamic output feedback for observed variable-stucture control systems , 1986 .

[17]  Vincent Andrieu,et al.  Global Asymptotic Stabilization for Nonminimum Phase Nonlinear Systems Admitting a Strict Normal Form , 2008, IEEE Transactions on Automatic Control.

[18]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[19]  Philippe Martin,et al.  A Lie-Backlund approach to equivalence and flatness of nonlinear systems , 1999, IEEE Trans. Autom. Control..

[20]  Leonid M. Fridman,et al.  Analysis of second-order sliding-mode algorithms in the frequency domain , 2004, IEEE Transactions on Automatic Control.

[21]  Christopher I. Byrnes,et al.  Nonlinear internal models for output regulation , 2004, IEEE Transactions on Automatic Control.

[22]  Vadim I. Utkin,et al.  Adaptive super-twist control with minimal chattering effect , 2011, IEEE Conference on Decision and Control and European Control Conference.

[23]  Giorgio Bartolini,et al.  Global stabilization for nonlinear uncertain systems with unmodeled actuator dynamics , 2001, IEEE Trans. Autom. Control..

[24]  Bruce A. Francis,et al.  The internal model principle of control theory , 1976, Autom..

[25]  Leonid M. Fridman,et al.  Quasi-continuous HOSM control for systems with unmatched perturbations , 2008, 2008 International Workshop on Variable Structure Systems.

[26]  川幡 長勝 安定度調整可能な最適Reduced Order Observerの設計法 , 1974 .

[27]  H. W. Bode,et al.  Network analysis and feedback amplifier design , 1945 .

[28]  A. Isidori,et al.  Asymptotic stabilization of minimum phase nonlinear systems , 1991 .

[29]  Arie Levant,et al.  Higher-order sliding modes, differentiation and output-feedback control , 2003 .

[30]  Giorgio Bartolini,et al.  Reduced-Order Observer in the Sliding-Mode Control of Nonlinear Nonaffine Systems , 2010, IEEE Transactions on Automatic Control.

[31]  Riccardo Marino,et al.  Global compensation of unknown sinusoidal disturbances for a class of nonlinear nonminimum phase systems , 2005, IEEE Transactions on Automatic Control.

[32]  Yuri B. Shtessel,et al.  Tracking in a class of nonminimum-phase systems with nonlinear internal dynamics via sliding mode control using method of system center , 2002, Autom..

[33]  A. Isidori,et al.  Output regulation of nonlinear systems , 1990 .

[34]  Jie Huang,et al.  Nonlinear Output Regulation: Theory and Applications , 2004 .

[35]  J. Karl Hedrick,et al.  Tracking nonlinear non-minimum phase systems using sliding control , 1993 .

[36]  Hebertt Sira-Ramírez Sliding Modes, Passivity, and Flatness , 2002 .

[37]  A. Levant Robust exact differentiation via sliding mode technique , 1998 .