LDSScanner: Exploratory Analysis of Low-Dimensional Structures in High-Dimensional Datasets
暂无分享,去创建一个
Anthony K. H. Tung | Weifeng Chen | Wei Chen | Jiazhi Xia | Yuxin Ma | Fenjin Ye | Yusi Wang | A. Tung | Wei Chen | Weifeng Chen | Yuxin Ma | Jiazhi Xia | Yusi Wang | Fenjin Ye
[1] Hans-Peter Kriegel,et al. Subspace selection for clustering high-dimensional data , 2004, Fourth IEEE International Conference on Data Mining (ICDM'04).
[2] Alberto Sánchez,et al. A comparative study between RadViz and Star Coordinates , 2016, IEEE Transactions on Visualization and Computer Graphics.
[3] P. Tseng. Nearest q-Flat to m Points , 2000 .
[4] Michael H. F. Wilkinson,et al. Finding and visualizing relevant subspaces for clustering high-dimensional astronomical data using connected morphological operators , 2010, 2010 IEEE Symposium on Visual Analytics Science and Technology.
[5] Laurens van der Maaten,et al. Accelerating t-SNE using tree-based algorithms , 2014, J. Mach. Learn. Res..
[6] Ian T. Jolliffe,et al. Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.
[7] René Vidal,et al. Sparse subspace clustering , 2009, CVPR.
[8] Geoffrey E. Hinton,et al. Visualizing Data using t-SNE , 2008 .
[9] Matthew Chalmers,et al. A virtual workspace for hybrid multidimensional scaling algorithms , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).
[10] Alfred Inselberg,et al. Parallel coordinates: a tool for visualizing multi-dimensional geometry , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.
[11] Michael J. McGuffin,et al. GPLOM: The Generalized Plot Matrix for Visualizing Multidimensional Multivariate Data , 2013, IEEE Transactions on Visualization and Computer Graphics.
[12] Ben Shneiderman,et al. A Rank-by-Feature Framework for Unsupervised Multidimensional Data Exploration Using Low Dimensional Projections , 2004, IEEE Symposium on Information Visualization.
[13] David S. Ebert,et al. DimScanner: A relation-based visual exploration approach towards data dimension inspection , 2016, 2016 IEEE Conference on Visual Analytics Science and Technology (VAST).
[14] 张振跃,et al. Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment , 2004 .
[15] Hans-Peter Kriegel,et al. Subspace clustering , 2012, WIREs Data Mining Knowl. Discov..
[16] Elmar Eisemann,et al. Approximated and User Steerable tSNE for Progressive Visual Analytics , 2015, IEEE Transactions on Visualization and Computer Graphics.
[17] Kanit Wongsuphasawat,et al. Voyager: Exploratory Analysis via Faceted Browsing of Visualization Recommendations , 2016, IEEE Transactions on Visualization and Computer Graphics.
[18] Mikhail Belkin,et al. Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering , 2001, NIPS.
[19] Georges G. Grinstein,et al. DNA visual and analytic data mining , 1997 .
[20] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[21] Daniel A. Keim,et al. Visual Interaction with Dimensionality Reduction: A Structured Literature Analysis , 2017, IEEE Transactions on Visualization and Computer Graphics.
[22] Ira Assent,et al. VISA: visual subspace clustering analysis , 2007, SKDD.
[23] René Vidal,et al. Sparse Manifold Clustering and Embedding , 2011, NIPS.
[24] Valerio Pascucci,et al. Visualizing High-Dimensional Data: Advances in the Past Decade , 2017, IEEE Transactions on Visualization and Computer Graphics.
[25] Boris Müller,et al. Probing Projections: Interaction Techniques for Interpreting Arrangements and Errors of Dimensionality Reductions , 2016, IEEE Transactions on Visualization and Computer Graphics.
[26] J. Tenenbaum,et al. A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.
[27] S T Roweis,et al. Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.
[28] Melanie Tory,et al. Visualizing Dimension Coverage to Support Exploratory Analysis , 2017, IEEE Transactions on Visualization and Computer Graphics.
[29] Vipin Kumar,et al. Finding Clusters of Different Sizes, Shapes, and Densities in Noisy, High Dimensional Data , 2003, SDM.
[30] Tamara Munzner,et al. DimStiller: Workflows for dimensional analysis and reduction , 2010, 2010 IEEE Symposium on Visual Analytics Science and Technology.
[31] Yoshua Bengio,et al. Gradient-based learning applied to document recognition , 1998, Proc. IEEE.
[32] Enrico Bertini,et al. Quality Metrics in High-Dimensional Data Visualization: An Overview and Systematization , 2011, IEEE Transactions on Visualization and Computer Graphics.
[33] Valerio Pascucci,et al. Visual Exploration of High‐Dimensional Data through Subspace Analysis and Dynamic Projections , 2015, Comput. Graph. Forum.
[34] Elmar Eisemann,et al. Hierarchical Stochastic Neighbor Embedding , 2016, Comput. Graph. Forum.
[35] Daniel A. Keim,et al. Subspace search and visualization to make sense of alternative clusterings in high-dimensional data , 2012, 2012 IEEE Conference on Visual Analytics Science and Technology (VAST).
[36] Hans-Peter Kriegel,et al. A General Framework for Increasing the Robustness of PCA-Based Correlation Clustering Algorithms , 2008, SSDBM.
[37] Emmanuel J. Candès,et al. Robust Subspace Clustering , 2013, ArXiv.
[38] Xiaoru Yuan,et al. Dimension Projection Matrix/Tree: Interactive Subspace Visual Exploration and Analysis of High Dimensional Data , 2013, IEEE Transactions on Visualization and Computer Graphics.
[39] Bernhard Schölkopf,et al. Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.
[40] Charu C. Aggarwal,et al. On the Surprising Behavior of Distance Metrics in High Dimensional Spaces , 2001, ICDT.
[41] Roberto Tron RenVidal. A Benchmark for the Comparison of 3-D Motion Segmentation Algorithms , 2007 .
[42] Marcus A. Magnor,et al. Combining automated analysis and visualization techniques for effective exploration of high-dimensional data , 2009, 2009 IEEE Symposium on Visual Analytics Science and Technology.