Isotopic evidence for Late Cretaceous plume–ridge interaction at the Hawaiian hotspot

[1]  W. Roest,et al.  Asymmetric sea-floor spreading caused by ridge–plume interactions , 1998, Nature.

[2]  J. Schilling,et al.  Plume‐ridge interaction in the Easter‐Salas y Gomez seamount chain‐Easter Microplate system: Pb isotope evidence , 1998 .

[3]  Michael O. Garcia,et al.  Crustal Contamination of Kilauea Volcano Magmas Revealed by Oxygen Isotope Analyses of Glass and Olivine from Puu Oo Eruption Lavas , 1998 .

[4]  E. Hauri Major-element variability in the Hawaiian mantle plume , 1996, Nature.

[5]  M. Richards,et al.  Thermal entrainment and melting in mantle plumes , 1995 .

[6]  C. Gable,et al.  Laboratory investigation of the interaction of off-axis mantle plumes and spreading centres , 1995, Nature.

[7]  Jian Lin,et al.  Oceanic spreading center–hotspot interactions: Constraints from along-isochron bathymetric and gravity anomalies , 1995 .

[8]  M. Fisk,et al.  Geochemistry and 40Ar/39Ar geochronology of basalts from ODP Leg 145 (North Pacific Transect) , 1995 .

[9]  S. Hart,et al.  Fluid dynamic and geochemical aspects of entrainment in mantle plumes , 1994 .

[10]  A. McBirney,et al.  Petrology and geochemistry of the Galápagos Islands: Portrait of a pathological mantle plume , 1993 .

[11]  S. Goldstein,et al.  Young formation age of a mantle plume source , 1993, Nature.

[12]  P. Lonsdale,et al.  Posterosional volcanism in the Cretaceous part of the Hawaiian Hotspot Trail , 1993 .

[13]  B. Weaver The origin of ocean island basalt end-member compositions: trace element and isotopic constraints , 1991 .

[14]  R. Duncan,et al.  5. ISOTOPE GEOCHEMISTRY OF LEG 115 BASALTS AND INFERENCES ON THE HISTORY OF THE REUNION MANTLE PLUME1 , 1990 .

[15]  M. Fisk,et al.  Reunion hotspot magma chemistry over the past 65 m.y.: Results from Leg 115 of the Ocean Drilling Program , 1989 .

[16]  B. Hanan,et al.  Easter microplate evolution: Pb isotope evidence , 1989 .

[17]  J. Mammerickx,et al.  Tectonic evolution of the North Pacific during the Cretaceous quiet period , 1988 .

[18]  J. Sclater,et al.  Depth and age in the north Pacific , 1988 .

[19]  F. Frey,et al.  Trace element and isotopic geochemistry of lavas from Haleakala Volcano, east Maui, Hawaii: Implications for the origin of Hawaiian basalts , 1985 .

[20]  H. Sigurdsson,et al.  Easter microplate evolution , 1985, Nature.

[21]  S. Verma,et al.  Neodymium isotopic evidence for Galapagos hotspot—spreading centre system evolution , 1983, Nature.

[22]  G. B. Dalrymple,et al.  Rb-Sr Systematics of Basalts from the Hawaiian-Emperor Volcanic Chain , 1980 .

[23]  G. Dalrymple Conventional and ^ Ar/^ Ar K-Ar ages of volcanic rocks from Ojin (Site 430), Nintoku (Site432) and Suiko (Site 433) seamounts and the chronology of volcanic propagation along the Hawaiian-Emperor chain , 1980 .

[24]  G. Dalrymple K-Ar minimum age for Meiji Guyot, Emperor seamount chain , 1980 .

[25]  D. Wood,et al.  A RE-APPRAISAL OF THE USE OF TRACE ELEMENTS TO CLASSIFY AND DISCRIMINATE BETWEEN MAGMA SERIES ERUPTED IN DIFFERENT TECTONIC SETTINGS , 1979 .

[26]  J. Schilling Iceland Mantle Plume: Geochemical Study of Reykjanes Ridge , 1973, Nature.