On mergers of distributions and distributions with exponential tails

A simple data-analytic method is suggested for modelling situations in which two processes are effective on different but overlapping domains. This is used to describe a two-tendency-model with exponential tails. The result is compared with the well-known hyperbolic distribution on the basis of a 'classical' data set fom particle size analysis.

[1]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[2]  O. Barndorff-Nielsen,et al.  Models for non-Gaussian variation, with applications to turbulence , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  R. Bagnold,et al.  The nature and correlation of random distributions , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[4]  O. Barndorff-Nielsen Exponentially decreasing distributions for the logarithm of particle size , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[5]  Jens Ledet Jensen,et al.  The Fascination of Sand , 1985 .

[6]  R. Bagnold,et al.  The Physics of Blown Sand and Desert Dunes , 1941 .

[7]  N. Fieller,et al.  The statistical analysis of ‘mixed’ grain size distributions from aeolian sands in the Libyan Pre-Desert using log skew Laplace models , 1987, Geological Society, London, Special Publications.

[8]  J. Ord,et al.  Characterization Problems in Mathematical Statistics , 1975 .

[9]  R. Bagnold The size-garding of sand by wind , 1937 .

[10]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[11]  D. D. Gilbertson,et al.  A new method for environmental analysis of particle size distribution data from shoreline sediments , 1984, Nature.

[12]  D. C. Hurst,et al.  MAXIMUM ENTROPY REVISITED , 1984 .

[13]  O. Barndorff-Nielsen,et al.  The pattern of natural size distributions , 1980 .

[14]  N. Martin,et al.  Mathematical Theory of Entropy , 1981 .

[15]  Jan M. Van Campenhout,et al.  Maximum entropy and conditional probability , 1981, IEEE Trans. Inf. Theory.