An Experimental Investigation into the Effect of Changes in the Geometry of a Slot Nozzle on the Heat Transfer Characteristics of an Impinging Air Jet

High velocity, impinging, air jets are commonly used for heating, cooling, drying etc., because of the high heat transfer coefficients which occur in the impingement region. To provide data for design, a variety of slot nozzles has been tested to determine the effect on heat transfer of both nozzle shape and slot width. A small heat flux meter was used to measure local values of the heat transfer coefficient in the impingement zone, and these local values were integrated to yield space average values. As a necessary preliminary to the heat transfer investigation, the discharge coefficients of the nozzles were measured. From the first test series it was found that heat transfer results from differently shaped nozzles could be satisfactorily correlated provided that the effective slot width was used to characterize nozzle shape. From the second test series it was found that for geometrically similar arrangements, narrower slots gave higher heat transfer coefficients.