Lagrange Multipliers for Multiobjective Programs with a General Preference

We consider a nonsmooth multiobjective optimization problems related to a new general preference between infinite dimensional Banach spaces. This preference contains preferences given by generalized Pareto as well as those given by an utility function. We use the concepts of compactly epi-Lipschitzian sets and strongly compactly Lipschitzian mappings to derive Lagrange multipliers of Karush–Kuhn–Tucker type and Fritz-John type in terms of the Ioffe-approximate subdifferentials.

[1]  René Henrion,et al.  Subdifferential Conditions for Calmness of Convex Constraints , 2002, SIAM J. Optim..

[2]  Werner Hildenbrand,et al.  Mathematical Economics: Valuation equilibrium and Pareto optimum , 1983 .

[3]  Robert Mifflin,et al.  On conditions to have bounded multipliers in locally lipschitz programming , 1980, Math. Program..

[4]  Jacques Gauvin,et al.  A necessary and sufficient regularity condition to have bounded multipliers in nonconvex programming , 1977, Math. Program..

[5]  J. J. Ye,et al.  Necessary Optimality Conditions for Optimization Problems with Variational Inequality Constraints , 1997, Math. Oper. Res..

[6]  Jonathan M. Borwein Epi-lipschitz-like sets in banach space: theorems and examples , 1987 .

[7]  Siam Staff,et al.  Necessary Optimality Conditions in Multiobjective Dynamic Optimization , 2003 .

[8]  Jacques Gauvin,et al.  Directional Behaviour of Optimal Solutions in Nonlinear Mathematical Programming , 1988, Math. Oper. Res..

[9]  Y. Ishizuka,et al.  Optimality conditions for directionally differentiable multi-objective programming problems , 1992 .

[10]  L. Thibault On subdifferential of optimal value functions , 1991 .

[11]  Qiji J. Zhu,et al.  Multiobjective optimization problem with variational inequality constraints , 2003, Math. Program..

[12]  Lionel Thibault,et al.  Subdifferentials of compactly lipschitzian vector-valued functions , 1980 .

[13]  G. Debreu Mathematical Economics: Continuity properties of Paretian utility , 1964 .

[14]  B. Mordukhovich,et al.  Differential characterizations of covering, metric regularity, and Lispchitzian properties of multifunctions between Banach spaces , 1995 .

[15]  L. Thibault,et al.  The approximate subdifferential of composite functions , 1993, Bulletin of the Australian Mathematical Society.

[16]  Abderrahim Jourani,et al.  Qualification conditions for multivalued functions in Banach spaces with applications to nonsmooth vector optimization problems , 1994, Math. Program..

[17]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[18]  A. Ioffe Approximate subdifferentials and applications 3: the metric theory , 1989 .

[19]  René Henrion,et al.  On the Calmness of a Class of Multifunctions , 2002, SIAM J. Optim..

[20]  J. M. Borwein,et al.  Proximal Analysis and Boundaries of Closed Sets in Banach Space. Part II: Applications , 1987, Canadian Journal of Mathematics.

[21]  J. Szpunar,et al.  Part II applications , 2003 .

[22]  R. Henrion,et al.  A Subdifferential Condition for Calmness of Multifunctions , 2001 .

[23]  Qiji J. Zhu,et al.  Hamiltonian Necessary Conditions for a Multiobjective Optimal Control Problem with Endpoint Constraints , 2000, SIAM J. Control. Optim..

[24]  B. Mordukhovich Variational analysis and generalized differentiation , 2006 .

[25]  A. Ioffe Approximate subdifferentials and applications II , 1986 .

[26]  J. Zowe,et al.  Regularity and stability for the mathematical programming problem in Banach spaces , 1979 .

[27]  Lionel Thibault,et al.  Extensions Of Subdifferential Calculus Rules in Banach Spaces , 1996, Canadian Journal of Mathematics.

[28]  I. Ekeland On the variational principle , 1974 .

[29]  A. Jourani On a class of compactly epi-Lipschitzian sets , 2003 .

[30]  R. Rockafellar Directional differentiability of the optimal value function in a nonlinear programming problem , 1984 .

[31]  L. Thibault,et al.  Metric regularity for strongly compactly Lipschitzian mappings , 1995 .

[32]  Jonathan M. Borwein,et al.  Proximal analysis and boundaries of closed sets in Banach space, Part I: theory , 1986 .

[33]  A. Jourani Constraint qualifications and Lagrange multipliers in nondifferentiable programming problems , 1994 .

[34]  A. Smilde,et al.  Multicriteria decision making , 1992 .

[35]  Abderrahim Jourani,et al.  Necessary conditions for extremality and separation theorems with applications to multiobjective optimization , 1998 .

[36]  M. Minami Weak Pareto-optimal necessary conditions in a nondifferentiable multiobjective program on a Banach space , 1983 .

[37]  B. M. Glover,et al.  A Fritz John optimality condition using the approximate subdifferential , 1994 .

[38]  A. Jourani Intersection Formulae and the Marginal Function in Banach Spaces , 1995 .

[39]  L. Thibault,et al.  Lagrange multiplers for pareto nonsmooth programming problems in banach spaces , 1992 .

[40]  Jonathan M. Borwein,et al.  Directionally Lipschitzian Mappings on Baire Spaces , 1984, Canadian Journal of Mathematics.