High-throughput thermodynamic analysis of the CVD of SiC from the SiCl4-CH4-H2 system

[1]  C. Wijayawardhana,et al.  Controlled CVD Growth of Highly ⟨111⟩-Oriented 3C-SiC , 2022, The Journal of Physical Chemistry C.

[2]  T. Goto,et al.  Epitaxial Growth of SiC Films on 4H-SiC Substrate by High-Frequency Induction-Heated Halide Chemical Vapor Deposition , 2022, Coatings.

[3]  E. Müller,et al.  Applications of thermodynamic calculations to practical TEG design: Mg2(Si0.3Sn0.7)/Cu interconnections , 2021, Journal of Materials Chemistry A.

[4]  J. Peng,et al.  Computational thermodynamic study of SiC chemical vapor deposition from MTS‐H 2 * , 2021 .

[5]  P. Tomasini Thermodynamic Theory of Silicon Chemical Vapor Deposition , 2021 .

[6]  Zi-kui Liu Computational thermodynamics and its applications , 2020 .

[7]  Lianmeng Zhang,et al.  Fine‐grained 3C‐SiC thick films prepared via hybrid laser chemical vapor deposition , 2019, Journal of the American Ceramic Society.

[8]  S. D. Elliott,et al.  Understanding the Mechanism of SiC Plasma-Enhanced Chemical Vapor Deposition (PECVD) and Developing Routes toward SiC Atomic Layer Deposition (ALD) with Density Functional Theory. , 2018, ACS applied materials & interfaces.

[9]  Myung-Hyun Lee,et al.  Thermodynamic design of a high temperature chemical vapor deposition process to synthesize α-SiC in Si-C-H and Si-C-H-Cl systems , 2018 .

[10]  Hui-Ming Cheng,et al.  Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures. , 2018, Chemical reviews.

[11]  Lianmeng Zhang,et al.  Effect of CH4/SiCl4 ratio on the composition and microstructure of 〈110〉-oriented β-SiC bulks by halide CVD , 2017 .

[12]  M. Drüe,et al.  Key experiments and challenging thermodynamic modeling of the Li-Si-C system , 2017 .

[13]  Lai-fei Cheng,et al.  Thermodynamic analysis on deposition of SiBCN ceramic by low pressure chemical vapor deposition/infiltration from SiCH3Cl3BCl3NH3H2Ar system , 2016 .

[14]  T. Goto,et al.  Preparation of ultra-thick β-SiC films using different carbon sources , 2015 .

[15]  T. Kimoto Material science and device physics in SiC technology for high-voltage power devices , 2015 .

[16]  E. Janzén,et al.  Brominated Chemistry for Chemical Vapor Deposition of Electronic Grade SiC , 2015 .

[17]  Litong Zhang,et al.  Thermodynamic calculation for the chemical vapor deposition of silicon carbonitride , 2014 .

[18]  J. Jiao,et al.  Thermodynamic Analysis of Chemical Vapor Deposition Progress for SiC Coatings , 2014 .

[19]  Myung-Hyun Lee,et al.  High-Temperature Chemical Vapor Deposition for SiC Single Crystal Bulk Growth Using Tetramethylsilane as a Precursor , 2014 .

[20]  Guo Qi Zhang,et al.  Tailoring the Mechanical Properties of High‐Aspect‐Ratio Carbon Nanotube Arrays using Amorphous Silicon Carbide Coatings , 2014 .

[21]  Litong Zhang,et al.  Thermodynamic calculations on the chemical vapor deposition of Si–C–N from the SiCl4–NH3–C3H6–H2–Ar system , 2013 .

[22]  Myung-Hyun Lee,et al.  Thermodynamic approach to the synthesis of silicon carbide using tetramethylsilane as the precursor at high temperature , 2012 .

[23]  Xue-Chao Liu,et al.  Effect of propane/silane ratio on the growth of 3C-SiC thin films on Si(1 0 0) substrates by APCVD , 2012 .

[24]  Yaroslav Koshka,et al.  Chloride-based CVD growth of silicon carbide for electronic applications. , 2012, Chemical reviews.

[25]  Kehe Su,et al.  Thermodynamics of the Production of Condensed Phases in the CVD of Methyltrichlorosilane Pyrolysis , 2009 .

[26]  Weigang Zhang,et al.  Chemical vapor deposition of SiC at different molar ratios of hydrogen to methyltrichlorosilane , 2009 .

[27]  Lai-fei Cheng,et al.  Kinetics of chemical vapor deposition of SiC from methyltrichlorosilane and hydrogen , 2009 .

[28]  Weigang Zhang,et al.  Kinetic and Microstructure of SiC Deposited from SiCl4-CH4-H2 , 2009 .

[29]  M. Sahimi,et al.  Experimental studies and computer simulation of the preparation of nanoporous silicon-carbide membranes by chemical-vapor infiltration/chemical-vapor deposition techniques , 2008 .

[30]  P. J. Spencer,et al.  A Brief History of CALPHAD , 2008 .

[31]  W. J. Lackey,et al.  Thermodynamics, Kinetics, and Microstructure of Laser Chemical Vapor Deposition of SiC , 2006 .

[32]  L. Höglund,et al.  Thermo-Calc and DICTRA Enhance Materials Design and Processing , 2005 .

[33]  L. Höglund,et al.  Thermo-Calc & DICTRA, computational tools for materials science , 2002 .

[34]  M. Hon,et al.  The growth characteristics of chemical vapour-deposited β-SiC on a graphite substrate by the SiCl4/C3H8/H2 system , 1995 .

[35]  H. Nagasawa,et al.  Mechanisms of SiC growth by alternate supply of SiH2Cl2 and C2H2 , 1994 .

[36]  H. Morkoç,et al.  Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies , 1994 .

[37]  S. V. Sotirchos,et al.  On the Homogeneous Chemistry of the Thermal Decomposition of Methyltrichlorosilane Thermodynamic Analysis and Kinetic Modeling , 1994 .

[38]  H. Nagasawa,et al.  Atomic level epitaxy of 3C-SiC by low pressure vapour deposition with alternating gas supply , 1993 .

[39]  T. Hirai,et al.  Thermodynamics for the preparation of SiC-C nano-composites by chemical vapour deposition , 1990 .

[40]  T. Hirai,et al.  Preparation of silicon carbide powders by chemical vapour deposition of the SiH4-CH4-H2 system , 1989 .

[41]  Jan-Olof Andersson,et al.  The Thermo-Calc databank system☆ , 1985 .

[42]  W. Petuskey,et al.  Thermodynamic Analysis and Kinetic Implications of Chemical Vapor Deposition of Sic from Si‐C‐C1‐H Gas Systems , 1985 .

[43]  A. Kingon,et al.  THERMODYNAMIC CALCULATIONS FOR THE CHEMICAL VAPOR DEPOSITION OF SILICON CARBIDE , 1983 .

[44]  K. Shiraishi,et al.  First-principles and thermodynamic analysis for gas phase reactions and structures of the SiC(0001) surface under conventional CVD and Halide CVD environments , 2021 .

[45]  Lianmeng Zhang,et al.  Ultra‐Fast Fabrication of ‐Oriented β‐SiC Wafers by Halide CVD , 2016 .

[46]  Ursula R Kattner,et al.  THE CALPHAD METHOD AND ITS ROLE IN MATERIAL AND PROCESS DEVELOPMENT. , 2016, Tecnologia em metalurgia, materiais e mineracao.

[47]  Magnus Willander,et al.  Silicon carbide and diamond for high temperature device applications , 2006 .

[48]  H. Matsunami,et al.  Growth of 6H-SiC on CVD-Grown 3C-SiC Substrates , 1989 .