Monodentate binding of zwitterionic ligands for boosting photocatalytic H2 production of perovskite nanocrystals

[1]  In Hwan Jung,et al.  Photocrosslinkable Zwitterionic Ligands for Perovskite Nanocrystals: Self‐Assembly and High‐Resolution Direct Patterning , 2023, Advanced Functional Materials.

[2]  Jaeyoung Jang,et al.  Facile Low-Energy and High-Yield Synthesis of Stable α-CsPbI3 Perovskite Quantum Dots: Decomposition Mechanisms and Solar Cell Applications , 2022, Chemical Engineering Journal.

[3]  H. Yin,et al.  Stabilization and Performance Enhancement Strategies for Halide Perovskite Photocatalysts , 2022, Advanced materials.

[4]  A. B. Muñoz-García,et al.  In Situ Formation of Zwitterionic Ligands: Changing the Passivation Paradigms of CsPbBr3 Nanocrystals , 2022, Nano letters.

[5]  P. Kamat,et al.  Efficacy of Perovskite Photocatalysis: Challenges to Overcome , 2022, ACS Energy Letters.

[6]  J. Brédas,et al.  Luminescence and Stability Enhancement of Inorganic Perovskite Nanocrystals via Selective Surface Ligand Binding. , 2021, ACS nano.

[7]  P. Zeng,et al.  High-Brightness Perovskite Light-Emitting Diodes Based on FAPbBr3 Nanocrystals with Rationally Designed Aromatic Ligands , 2021 .

[8]  Chenghao Bi,et al.  Perovskite Quantum Dots with Ultralow Trap Density by Acid Etching‐Driven Ligand Exchange for High Luminance and Stable Pure‐Blue Light‐Emitting Diodes , 2021, Advanced materials.

[9]  Da Li,et al.  Multivariant ligands stabilize anionic solvent-oriented α-CsPbX3 nanocrystals at room temperature. , 2021, Nanoscale.

[10]  Kaifeng Wu,et al.  Mechanistic Understanding of Efficient Photocatalytic H2 Evolution on Two-Dimensional Layered Lead Iodide Hybrid Perovskites. , 2021, Angewandte Chemie.

[11]  Jong Gyu Oh,et al.  Enhanced Stabilities and Production Yields of MAPbBr3 Quantum Dots and Their Applications as Stretchable and Self-Healable Color Filters. , 2021, ACS applied materials & interfaces.

[12]  G. Rainò,et al.  Monodisperse Long-Chain Sulfobetaine-Capped CsPbBr3 Nanocrystals and Their Superfluorescent Assemblies , 2020, ACS central science.

[13]  M. Marelli,et al.  Water-Stable DMASnBr3 Lead-Free Perovskite for Effective Solar-Driven Photocatalysis. , 2020, Angewandte Chemie.

[14]  Tong Cai,et al.  Stereoselective C-C Oxidative Coupling Reactions Photocatalyzed by Zwitterion Ligands Capped CsPbBr3 Perovskite Quantum Dots. , 2020, Angewandte Chemie.

[15]  Yang Yang,et al.  The surface of halide perovskites from nano to bulk , 2020, Nature Reviews Materials.

[16]  E. Kumacheva,et al.  Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots , 2020, Nature Nanotechnology.

[17]  Yixin Zhao,et al.  Lead-free double perovskite Cs2AgBiBr6/RGO composite for efficient visible light photocatalytic H2 evolution , 2020 .

[18]  E. Pidko,et al.  Understanding the Effect of Crystalline Structural Transformation for Lead‐Free Inorganic Halide Perovskites , 2020, Advanced materials.

[19]  B. Korgel,et al.  A “Tips and Tricks” Practical Guide to the Synthesis of Metal Halide Perovskite Nanocrystals , 2020, Chemistry of Materials.

[20]  Wei Wang,et al.  An Eco-friendly Strategy to Improve Durability and Stability of Zwitterionic Capping Ligands Colloidal CsPbBr3 Nanocrystals. , 2020, Langmuir : the ACS journal of surfaces and colloids.

[21]  R. Cava,et al.  Understanding the Instability of the Halide Perovskite CsPbI3 through Temperature‐Dependent Structural Analysis , 2020, Advanced materials.

[22]  R. Grisorio,et al.  Insights into the role of the lead/surfactant ratio in the formation and passivation of cesium lead bromide perovskite nanocrystals. , 2019, Nanoscale.

[23]  S. Dutta,et al.  Doping Iron in CsPbBr3 Perovskite Nanocrystals for Efficient and Product Selective CO2 Reduction. , 2019, The journal of physical chemistry letters.

[24]  F. Stellacci,et al.  Stable Ultraconcentrated and Ultradilute Colloids of CsPbX3 (X = Cl, Br) Nanocrystals Using Natural Lecithin as a Capping Ligand , 2019, Journal of the American Chemical Society.

[25]  Lei Tian,et al.  Highly Stabilized Quantum Dot Ink for Efficient Infrared Light Absorbing Solar Cells , 2019, Advanced Energy Materials.

[26]  Jianyu Yuan,et al.  Perovskite Quantum Dot Solar Cells with 15.6% Efficiency and Improved Stability Enabled by an α-CsPbI3/FAPbI3 Bilayer Structure , 2019, ACS Energy Letters.

[27]  Bin Luo,et al.  Surface Ligands Stabilized Lead Halide Perovskite Quantum Dot Photocatalyst for Visible Light‐Driven Hydrogen Generation , 2019, Advanced Functional Materials.

[28]  W. Mai,et al.  Enhancing photoelectrochemical water splitting by combining work function tuning and heterojunction engineering , 2019, Nature Communications.

[29]  Jae Hyuck Jang,et al.  Mechanistic Insight Into Surface Defect Control in Perovskite Nanocrystals: Ligands Terminate the Valence Transition From Pb2+ to Metallic Pb0. , 2019, The journal of physical chemistry letters.

[30]  Jun Liu,et al.  High efficiency perovskite quantum dot solar cells with charge separating heterostructure , 2019, Nature Communications.

[31]  A. Masud,et al.  Mechanistic Exploration of Dodecanethiol-Treated Colloidal CsPbBr3 Nanocrystals with Photoluminescence Quantum Yields Reaching Near 100% , 2019, The Journal of Physical Chemistry C.

[32]  Ying Dai,et al.  Perovskite photocatalyst CsPbBr3-xIx with a bandgap funnel structure for H2 evolution under visible light , 2019, Applied Catalysis B: Environmental.

[33]  Barry P Rand,et al.  Amine additive reactions induced by the soft Lewis acidity of Pb2+ in halide perovskites. Part II: impacts of amido Pb impurities in methylammonium lead triiodide thin films , 2019, Journal of Materials Chemistry C.

[34]  L. Manna,et al.  Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties , 2019, Chemical reviews.

[35]  R. Grisorio,et al.  Exploring the surface chemistry of cesium lead halide perovskite nanocrystals. , 2019, Nanoscale.

[36]  Z. Xia,et al.  Postsynthetic Surface Trap Removal of CsPbX3 (X = Cl, Br, or I) Quantum Dots via a ZnX2/Hexane Solution toward an Enhanced Luminescence Quantum Yield , 2018, Chemistry of Materials.

[37]  R. Scheidt,et al.  Interfacial Charge Transfer between Excited CsPbBr3 Nanocrystals and TiO2: Charge Injection versus Photodegradation. , 2018, The journal of physical chemistry letters.

[38]  Mincheol Chang,et al.  Interface Engineering Strategies for Fabricating Nanocrystal-Based Organic–Inorganic Nanocomposites , 2018, Applied Sciences.

[39]  Q. Yao,et al.  Low defects, large area and high stability of all-inorganic lead halide perovskite CsPbBr3 thin films with micron-grains via heat-spraying process for self-driven photodetector , 2018, RSC advances.

[40]  T. Williams,et al.  Quantifying the Thermodynamics of Ligand Binding to CsPbBr3 Quantum Dots. , 2018, Angewandte Chemie.

[41]  Ashley R. Marshall,et al.  Targeted Ligand-Exchange Chemistry on Cesium Lead Halide Perovskite Quantum Dots for High-Efficiency Photovoltaics. , 2018, Journal of the American Chemical Society.

[42]  Yitong Dong,et al.  Precise Control of Quantum Confinement in Cesium Lead Halide Perovskite Quantum Dots via Thermodynamic Equilibrium. , 2018, Nano letters.

[43]  Weizhen Yu,et al.  Dynamic Interaction Between Methylammonium Lead Iodide and TiO2 Nanocrystals Leads to Enhanced Photocatalytic H2 Evolution from HI Splitting , 2018 .

[44]  William W. Yu,et al.  Surface ligand modification of cesium lead bromide nanocrystals for improved light-emitting performance. , 2018, Nanoscale.

[45]  Chih-Jen Shih,et al.  Colloidal CsPbX3 (X = Cl, Br, I) Nanocrystals 2.0: Zwitterionic Capping Ligands for Improved Durability and Stability , 2018, ACS energy letters.

[46]  Jingjing Zhao,et al.  Stabilizing the α-Phase of CsPbI3 Perovskite by Sulfobetaine Zwitterions in One-Step Spin-Coating Films , 2017 .

[47]  P. Ghosh,et al.  Origin of the Substitution Mechanism for the Binding of Organic Ligands on the Surface of CsPbBr3 Perovskite Nanocubes. , 2017, The journal of physical chemistry letters.

[48]  K. Domen,et al.  Introductory lecture: sunlight-driven water splitting and carbon dioxide reduction by heterogeneous semiconductor systems as key processes in artificial photosynthesis. , 2017, Faraday discussions.

[49]  G. Galli,et al.  Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification , 2017, Nature Communications.

[50]  Noah D Bronstein,et al.  Essentially Trap-Free CsPbBr3 Colloidal Nanocrystals by Postsynthetic Thiocyanate Surface Treatment. , 2017, Journal of the American Chemical Society.

[51]  R. Friend,et al.  Amine-Based Passivating Materials for Enhanced Optical Properties and Performance of Organic-Inorganic Perovskites in Light-Emitting Diodes. , 2017, The journal of physical chemistry letters.

[52]  Aram Amassian,et al.  Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids. , 2017, Nature materials.

[53]  M. Roeffaers,et al.  Facile Morphology‐Controlled Synthesis of Organolead Iodide Perovskite Nanocrystals Using Binary Capping Agents , 2017, ChemNanoMat : chemistry of nanomaterials for energy, biology and more.

[54]  P. Kamat,et al.  Au–CsPbBr3 Hybrid Architecture: Anchoring Gold Nanoparticles on Cubic Perovskite Nanocrystals , 2017 .

[55]  Woo Je Chang,et al.  Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution , 2016, Nature Energy.

[56]  John Rumble,et al.  Guidance to improve the scientific value of zeta-potential measurements in nanoEHS , 2016 .

[57]  Taeghwan Hyeon,et al.  Erratum: The surface science of nanocrystals. , 2016, Nature materials.

[58]  Zeger Hens,et al.  Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals. , 2016, ACS nano.

[59]  J. Berry,et al.  Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys , 2016 .

[60]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[61]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[62]  D. Vanderbilt,et al.  Pseudopotentials for high-throughput DFT calculations , 2013, 1305.5973.

[63]  Shuhong Yu,et al.  Large scale photochemical synthesis of M@TiO2 nanocomposites (M = Ag, Pd, Au, Pt) and their optical properties, CO oxidation performance, and antibacterial effect , 2010 .

[64]  Shaowei Chen,et al.  Janus nanoparticles: reaction dynamics and NOESY characterization , 2009 .

[65]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[66]  A. Bard,et al.  Heterogeneous photocatalytic synthesis of methane from acetic acid: new Kolbe reaction pathway , 1978 .

[67]  P. Schall,et al.  CsPbI3 nanocrystal films: towards higher stability and efficiency , 2020, Journal of Materials Chemistry C.