Carrier Transport and Photoresponse in GeSe/MoS2 Heterojunction p-n Diodes.

Simple stacking of thin van der Waals 2D materials with different physical properties enables one to create heterojunctions (HJs) with novel functionalities and new potential applications. Here, a 2D material p-n HJ of GeSe/MoS2 is fabricated and its vertical and horizontal carrier transport and photoresponse properties are studied. Substantial rectification with a very high contrast (>104 ) through the potential barrier in the vertical-direction tunneling of HJs is observed. The negative differential transconductance with high peak-to-valley ratio (>105 ) due to the series resistance change of GeSe, MoS2 , and HJs at different gate voltages is observed. Moreover, strong and broad-band photoresponse via the photoconductive effect are also demonstrated. The explored multifunctional properties of the GeSe/MoS2 HJs are expected to be important for understanding the carrier transport and photoresponse of 2D-material HJs for achieving their use in various new applications in the electronics and optoelectronics fields.

[1]  Ying Dai,et al.  Two-dimensional germanium monochalcogenides for photocatalytic water splitting with high carrier mobility , 2017 .

[2]  Y. Miyauchi,et al.  Polarization-sensitive and broadband germanium sulfide photodetectors with excellent high-temperature performance. , 2017, Nanoscale.

[3]  Xuhai Liu,et al.  Layer-controlled band alignment, work function and optical properties of few-layer GeSe , 2017 .

[4]  L. Wan,et al.  Investigation of Physical and Electronic Properties of GeSe for Photovoltaic Applications , 2017 .

[5]  Kaiyou Wang,et al.  Fast gate-tunable photodetection in the graphene sandwiched WSe2/GaSe heterojunctions. , 2017, Nanoscale.

[6]  Jin-Hong Park,et al.  Light-Triggered Ternary Device and Inverter Based on Heterojunction of van der Waals Materials. , 2017, ACS nano.

[7]  P. Ajayan,et al.  Two-dimensional non-volatile programmable p-n junctions. , 2017, Nature nanotechnology.

[8]  Feng Wang,et al.  Configuration-dependent anti-ambipolar van der Waals p-n heterostructures based on pentacene single crystal and MoS2. , 2017, Nanoscale.

[9]  Biao Wang,et al.  Gate-Controlled BP-WSe2 Heterojunction Diode for Logic Rectifiers and Logic Optoelectronics. , 2017, Small.

[10]  Yan Wang,et al.  Light induced double ‘on’ state anti-ambipolar behavior and self-driven photoswitching in p-WSe2/n-SnS2 heterostructures , 2017 .

[11]  Zhixin Li,et al.  Novel Transfer Behaviors in 2D MoS2/WSe2 Heterotransistor and Its Applications in Visible‐Near Infrared Photodetection , 2017 .

[12]  Seong Chu Lim,et al.  Charge Transport in MoS2/WSe2 van der Waals Heterostructure with Tunable Inversion Layer. , 2017, ACS nano.

[13]  Kaiyou Wang,et al.  Fast, multicolor photodetection with graphene-contacted p-GaSe/n-InSe van der Waals heterostructures , 2017, Nanotechnology.

[14]  Kaiyou Wang,et al.  Photodetectors based on junctions of two-dimensional transition metal dichalcogenides* , 2017, 1702.02260.

[15]  F. Wen,et al.  Highly sensitive and fast monolayer WS2 phototransistors realized by SnS nanosheet decoration. , 2017, Nanoscale.

[16]  Wenjin Zhang,et al.  Anisotropic optical and electronic properties of two-dimensional layered germanium sulfide , 2017, Nano Research.

[17]  L. Wan,et al.  GeSe Thin-Film Solar Cells Fabricated by Self-Regulated Rapid Thermal Sublimation. , 2017, Journal of the American Chemical Society.

[18]  Q. Cui,et al.  Type-I van der Waals heterostructure formed by MoS2 and ReS2 monolayers. , 2017, Nanoscale horizons.

[19]  Takhee Lee,et al.  Trap-mediated electronic transport properties of gate-tunable pentacene/MoS2 p-n heterojunction diodes , 2016, Scientific Reports.

[20]  Sungjoo Lee,et al.  Phosphorene/rhenium disulfide heterojunction-based negative differential resistance device for multi-valued logic , 2016, Nature Communications.

[21]  T. Kaneko,et al.  Transport Dynamics of Neutral Excitons and Trions in Monolayer WS2. , 2016, ACS nano.

[22]  Zhenwei Wang,et al.  Hybrid van der Waals p–n Heterojunctions based on SnO and 2D MoS2 , 2016, Advanced materials.

[23]  Feng Wang,et al.  Configuration‐Dependent Electrically Tunable Van der Waals Heterostructures Based on MoTe2/MoS2 , 2016 .

[24]  X. Duan,et al.  Van der Waals heterostructures and devices , 2016 .

[25]  Yeonwoong Jung,et al.  Two-dimensional lateral heterojunction through bandgap engineering of MoS2 via oxygen plasma , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[26]  Yan Wang,et al.  Anti-Ambipolar Field-Effect Transistors Based On Few-Layer 2D Transition Metal Dichalcogenides. , 2016, ACS applied materials & interfaces.

[27]  M. Kanatzidis,et al.  Computational Prediction of High Thermoelectric Performance in Hole Doped Layered GeSe , 2016 .

[28]  Hao Li,et al.  Near-Infrared Photodetector Based on MoS2/Black Phosphorus Heterojunction , 2016 .

[29]  Hua Yu,et al.  Gate tunable WSe2-BP van der Waals heterojunction devices. , 2016, Nanoscale.

[30]  C. Xia,et al.  Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p–n heterojunctions , 2016, Nano Research.

[31]  M. Dresselhaus,et al.  Transport Properties of a MoS2/WSe2 Heterojunction Transistor and Its Potential for Application. , 2016, Nano letters.

[32]  Yan Liu,et al.  Scalable Production of a Few-Layer MoS2/WS2 Vertical Heterojunction Array and Its Application for Photodetectors. , 2016, ACS nano.

[33]  Sara E. C. Dale,et al.  Rhenium Dichalcogenides: Layered Semiconductors with Two Vertical Orientations. , 2016, Nano letters.

[34]  Zongfu Yu,et al.  Producing air-stable monolayers of phosphorene and their defect engineering , 2016, Nature Communications.

[35]  F. Miao,et al.  High Responsivity Phototransistors Based on Few‐Layer ReS2 for Weak Signal Detection , 2015, 1512.06515.

[36]  L. Lauhon,et al.  Hybrid, Gate-Tunable, van der Waals p-n Heterojunctions from Pentacene and MoS2. , 2015, Nano letters.

[37]  A. Castellanos-Gómez,et al.  Gate Controlled Photocurrent Generation Mechanisms in High-Gain In₂Se₃ Phototransistors. , 2015, Nano letters.

[38]  H. Schmidt,et al.  Electronic transport properties of transition metal dichalcogenide field-effect devices: surface and interface effects. , 2015, Chemical Society reviews.

[39]  H. Zeng,et al.  GeSe monolayer semiconductor with tunable direct band gap and small carrier effective mass , 2015 .

[40]  D. Ciudad,et al.  Gate-tunable diode and photovoltaic effect in an organic-2D layered material p-n junction. , 2015, Nanoscale.

[41]  Andres Castellanos-Gomez,et al.  Photocurrent generation with two-dimensional van der Waals semiconductors. , 2015, Chemical Society reviews.

[42]  A. Carvalho,et al.  Phosphorene analogues: Isoelectronic two-dimensional group-IV monochalcogenides with orthorhombic structure , 2015, 1504.05627.

[43]  D. Drouin,et al.  Space-charge limited transport in large-area monolayer hexagonal boron nitride. , 2015, Nano letters.

[44]  S. Lodha,et al.  Schottky barrier heights for Au and Pd contacts to MoS2 , 2014 .

[45]  P. Ajayan,et al.  Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. , 2014, ACS nano.

[46]  T. Mueller,et al.  Mechanisms of photoconductivity in atomically thin MoS2. , 2014, Nano letters.

[47]  X. Duan,et al.  Electroluminescence and Photocurrent Generation from Atomically Sharp WSe2/MoS2 Heterojunction p–n Diodes , 2014, Nano letters.

[48]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[49]  F. Libisch,et al.  Photovoltaic Effect in an Electrically Tunable van der Waals Heterojunction , 2014, Nano letters.

[50]  K. Tsukagoshi,et al.  Barrier inhomogeneities at vertically stacked graphene-based heterostructures. , 2014, Nanoscale.

[51]  P. Jarillo-Herrero,et al.  Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. , 2013, Nature nanotechnology.

[52]  T. Mueller,et al.  Solar-energy conversion and light emission in an atomic monolayer p-n diode. , 2013, Nature nanotechnology.

[53]  Lain-Jong Li,et al.  High‐Gain Phototransistors Based on a CVD MoS2 Monolayer , 2013, Advanced materials.

[54]  L. Zhen,et al.  Surface potential and interlayer screening effects of few-layer MoS2 nanoflakes , 2013 .

[55]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[56]  Changgu Lee,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[57]  P. Frigeri,et al.  Electrical transport and low frequency noise characteristics of Au/n-GaAs Schottky diodes containing InAs quantum dots , 2004 .

[58]  A. Anagnostopoulos,et al.  Electrical behavior of extended twins present in layered GeSe , 1986 .

[59]  U. Zwick,et al.  Raman scattering and infrared reflectivity in GeSe , 1976 .

[60]  Kaiyou Wang,et al.  High‐Performance, Self‐Driven Photodetector Based on Graphene Sandwiched GaSe/WS2 Heterojunction , 2018 .

[61]  L. Eaves,et al.  Fast multicolor photodetectors based on graphene-contacted p-GaSe/n-InSe van der Waals heterostructures , 2017 .