Coupling dynamic simulation and interactive multiobjective optimization for complex problems: An APROS-NIMBUS case study

Dynamic process simulators for plant-wide process simulation and multiobjective optimization tools can be used by industries as a means to cut costs and enhance profitability. Specifically, dynamic process simulators are useful in the process plant design phase, as they provide several benefits such as savings in time and costs. On the other hand, multiobjective optimization tools are useful in obtaining the best possible process designs when multiple conflicting objectives are to be optimized simultaneously. Here we concentrate on interactive multiobjective optimization. When multiobjective optimization methods are used in process design, they need an access to dynamic process simulators, hence it is desirable for them to coexist on the same software platform. However, such a co-existence is not common. Hence, users need to couple multiobjective optimization software and simulators, which may not be trivial. In this paper, we consider APROS, a dynamic process simulator and couple it with IND-NIMBUS, an interactive multiobjective optimization software. Specifically, we: (a) study the coupling of interactive multiobjective optimization with a dynamic process simulator; (b) bring out the importance of utilizing interactive multiobjective optimization; (c) propose an augmented interactive multiobjective optimization algorithm; and (d) apply an APROS-NIMBUS coupling for solving a dynamic optimization problem in a two-stage separation process.

[1]  Topi Tahvonen,et al.  Simulation Assisted Automation Testing During Loviisa Automation Renewal Project , 2009 .

[2]  Kaisa Miettinen,et al.  Synchronous approach in interactive multiobjective optimization , 2006, Eur. J. Oper. Res..

[3]  Kaisa Miettinen,et al.  Numerical Comparison of Some Penalty-Based Constraint Handling Techniques in Genetic Algorithms , 2003, J. Glob. Optim..

[4]  Kaisa Miettinen,et al.  Interactive multi-objective optimization for simulated moving bed processes , 2007 .

[5]  Andrzej P. Wierzbicki,et al.  The Use of Reference Objectives in Multiobjective Optimization , 1979 .

[6]  J. Hämäläinen,et al.  Bi-level optimization for a dynamic multiobjective problem , 2012 .

[7]  Kaisa Miettinen,et al.  Introduction to Multiobjective Optimization: Interactive Approaches , 2008, Multiobjective Optimization.

[8]  Mikko Linnala,et al.  Dynamic simulation and optimization of an SC papermaking line – illustrated with case studies , 2010 .

[9]  Jouni Savolainen,et al.  EXPERIENCES ON UTILISING PLANT SCALE DYNAMIC SIMULATION IN PROCESS INDUSTRY , 2005 .

[10]  M. J. D. Powell,et al.  Direct search algorithms for optimization calculations , 1998, Acta Numerica.

[11]  Kaisa Miettinen,et al.  Wastewater treatment: New insight provided by interactive multiobjective optimization , 2011, Decis. Support Syst..

[12]  Kaisa Miettinen,et al.  Comparative evaluation of some interactive reference point-based methods for multi-objective optimisation , 1999, J. Oper. Res. Soc..

[13]  Kaisa Miettinen,et al.  Why Use Interactive Multi-Objective Optimization in Chemical Process Design? , 2009 .

[14]  Kalle Halmevaara,et al.  Simulation assisted performance optimization of large-scale multiparameter technical systems , 2009 .

[15]  Kalyanmoy Deb,et al.  A Hybrid Framework for Evolutionary Multi-Objective Optimization , 2013, IEEE Transactions on Evolutionary Computation.

[16]  Kaisa Miettinen,et al.  Nonlinear Interactive Multiobjective Optimization Method for Radiotherapy Treatment Planning with Boltzmann Transport Equation , 2009 .

[17]  Kaisa Miettinen,et al.  IND-NIMBUS for Demanding Interactive Multiobjective Optimization , 2006 .

[18]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[19]  Kaisa Miettinen,et al.  On Interactive Multiobjective Optimization with NIMBUS in Chemical Process Design , 2005 .

[20]  Jouni Savolainen,et al.  Utilization of dynamic simulation in the improvement of a pulping process , 2007 .

[21]  Kaisa Miettinen,et al.  Introduction to Multiobjective Optimization: Noninteractive Approaches , 2008, Multiobjective Optimization.

[22]  Kaisa Miettinen,et al.  A solution process for simulation-based multiobjective design optimization with an application in the paper industry , 2014, Comput. Aided Des..

[23]  M. Powell A Direct Search Optimization Method That Models the Objective and Constraint Functions by Linear Interpolation , 1994 .

[24]  Vesa Ojalehto,et al.  An interactive multi-objective approach to heat exchanger network synthesis , 2010, Comput. Chem. Eng..

[25]  Jürgen Branke,et al.  Interactive Multiobjective Evolutionary Algorithms , 2008, Multiobjective Optimization.

[26]  Sanford Friedenthal,et al.  OMG Systems Modeling Language (OMG SysML™) Tutorial , 2008 .

[27]  Juha Hakala,et al.  An integrated multiobjective design tool for process design , 2006 .

[28]  Kaisa Miettinen,et al.  Optimal Control of Continuous Casting by Nondifferentiable Multiobjective Optimization , 1998, Comput. Optim. Appl..

[29]  Vesa Ojalehto,et al.  Bilevel heat exchanger network synthesis with an interactive multi-objective optimization method , 2012 .

[30]  Peyton Jones,et al.  Haskell 98 language and libraries : the revised report , 2003 .

[31]  Kaisa Miettinen,et al.  Interactive multiobjective optimization system WWW-NIMBUS on the Internet , 2000, Comput. Oper. Res..

[32]  Kaisa Miettinen,et al.  Multiobjective optimization of an ultrasonic transducer using NIMBUS. , 2006, Ultrasonics.

[33]  Tommi Karhela,et al.  Open Ontology-based Integration Platform for Modeling and simulation in Engineering , 2012, Int. J. Model. Simul. Sci. Comput..

[34]  Kaisa Miettinen,et al.  Using Interactive Multiobjective Optimization in Continuous Casting of Steel , 2007 .

[35]  Vesa Ojalehto,et al.  APROS-NIMBUS: Dynamic process simulator and interactive multiobjective optimization in plant automation , 2013 .

[36]  Valko Mavrov,et al.  Computer‐Aided Simulation and Design of Nanofiltration Processes , 2003, Annals of the New York Academy of Sciences.

[37]  Kaisa Miettinen,et al.  On scalarizing functions in multiobjective optimization , 2002, OR Spectr..

[38]  M. Slee,et al.  Thrift : Scalable Cross-Language Services Implementation , 2022 .

[39]  Jari Lappalainen,et al.  Enhancing grade changes using dynamic simulation , 2003 .

[40]  K. Miettinen,et al.  Interactive bundle-based method for nondifferentiable multiobjeective optimization: nimbus § , 1995 .

[41]  Kalyanmoy Deb,et al.  Toward an Estimation of Nadir Objective Vector Using a Hybrid of Evolutionary and Local Search Approaches , 2010, IEEE Transactions on Evolutionary Computation.

[42]  Kaisa Miettinen,et al.  Wastewater treatment plant design and operation under multiple conflicting objective functions , 2013, Environ. Model. Softw..

[43]  Kaisa Miettinen,et al.  Interactive multiobjective optimization for anatomy-based three-dimensional HDR brachytherapy , 2010, Physics in medicine and biology.

[44]  Kaj Juslin,et al.  The APROS software for process simulation and model development , 1989 .

[45]  K. Miettinen,et al.  Interactive Solution Approach to a Multiobjective Optimization Problem in a Paper Machine Headbox Design , 2003 .