Adaptive Estimation of Time-Varying Parameters With Application to Roto-Magnet Plant

This paper presents an alternative adaptive parameter estimation framework for nonlinear systems with time-varying parameters. Unlike existing techniques that rely on the polynomial approximation of time-varying parameters, the proposed method can directly estimate the unknown time-varying parameters. Moreover, this paper proposes several new adaptive laws driven by the derived information of parameter estimation errors, which achieve faster convergence rate than conventional gradient descent algorithms. In particular, the exponential error convergence can be rigorously proved under the well-recognized persistent excitation condition. The robustness of the developed adaptive estimation schemes against bounded disturbances is also studied. Comparative simulation results reveal that the proposed approaches can achieve better estimation performance than several other estimation algorithms. Finally, the proposed parameter estimation methods are verified by conducting experiments based on a roto-magnet plant.

[1]  Alessandro Astolfi,et al.  Immersion and invariance: a new tool for stabilization and adaptive control of nonlinear systems , 2001, IEEE Trans. Autom. Control..

[2]  Okyay Kaynak,et al.  Robust Identification of LPV Time-Delay System With Randomly Missing Measurements , 2018, IEEE Transactions on Systems, Man, and Cybernetics: Systems.

[3]  F. Ding,et al.  Performance analysis of the generalised projection identification for time-varying systems , 2016 .

[4]  Ramon Costa-Castelló,et al.  Demonstration of the internal model principle by digital repetitive control of an educational laboratory plant , 2005, IEEE Transactions on Education.

[5]  Jing Na,et al.  Adaptive prescribed performance control of nonlinear systems with unknown dead zone , 2013 .

[6]  Guido Herrmann,et al.  Adaptive input and parameter estimation with application to engine torque estimation , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[7]  Anuradha M. Annaswamy,et al.  Parameter convergence in nonlinearly parameterized systems , 2003, IEEE Trans. Autom. Control..

[8]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[9]  Brian D. O. Anderson,et al.  Challenges of adaptive control-past, permanent and future , 2008, Annu. Rev. Control..

[10]  Prabhakar R. Pagilla,et al.  Adaptive Estimation of Time-Varying Parameters in Linearly Parametrized Systems , 2006 .

[11]  Guido Herrmann,et al.  Robust adaptive finite‐time parameter estimation and control for robotic systems , 2015 .

[12]  Robert E. Mahony,et al.  Identification of linear time-varying systems using a modified least-squares algorithm , 2000, Autom..

[13]  Martin Guay,et al.  Set-based adaptive estimation for a class of nonlinear systems with time-varying parameters , 2014 .

[14]  R. Lozano,et al.  Robust adaptive identification of slowly time-varying parameters with bounded disturbances , 1997, 1997 European Control Conference (ECC).

[15]  Feng Ding,et al.  Parameter Identification and Intersample Output Estimation for Dual-Rate Systems , 2008, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[16]  Guido Herrmann,et al.  Vehicle Engine Torque Estimation via Unknown Input Observer and Adaptive Parameter Estimation , 2018, IEEE Transactions on Vehicular Technology.

[17]  Jie Chen,et al.  On‐line parameter estimation for a class of time‐varying continuous systems with bounded disturbances , 2011 .

[18]  Martin Guay,et al.  Almost invariant manifold approach for adaptive estimation of periodic and aperiodic unknown time-varying parameters , 2016 .

[19]  G. Goodwin,et al.  Adaptive control of time-varying linear systems , 1988 .

[20]  X. Ren,et al.  Robust adaptive finite-time parameter estimation for linearly parameterized nonlinear systems , 2013, Proceedings of the 32nd Chinese Control Conference.

[21]  Yu Guo,et al.  Robust adaptive estimation of nonlinear system with time‐varying parameters , 2015 .

[22]  S. Sastry,et al.  Adaptive Control: Stability, Convergence and Robustness , 1989 .

[23]  Yongsheng Ding,et al.  An Augmented Model Approach for Identification of Nonlinear Errors-in-Variables Systems Using the EM Algorithm , 2018, IEEE Transactions on Systems, Man, and Cybernetics: Systems.