Vertical variation in the deuteric oxidation of titanomagnetites in an ignimbrite deposit: Kızılkaya Ignimbrite (Cappadocia, Turkey)

Abstract Titanomagnetites are arguably the most important Fe–Ti oxide mineral in magmatic rocks because they are widely used in paleomagnetic, magnetic anisotropy, and petrologic studies. Elemental concentrations of Ti in titanomagnetites can change rapidly with varying temperature and oxygen fugacity, with oxidation producing “oxyexsolution” lamellae. Titanomagnetites of the ca. 5 Ma Kizilkaya ignimbrite deposit in Cappadocia exhibit systematic vertical variation of trellis-type oxyexsolution forms in three sampled sections. The basal zones of Kizilkaya ignimbrite contain homogeneous titanomagnetites, whereas middle and the upper zones of the deposit comprise increasingly oxidized titanomagnetites where the oxyexsolved Ti-rich lamellae get thicker and more populated towards the top. The existence of oxidized titanomagnetite grains with increasing volume of trellis-type exsolution lamellae indicates that the middle and the upper zones of the deposit cooled down more slowly than the basal zones and were influenced by deuteric oxidation during cooling. The progressive increases in oxidation upsection are also correlated with increasing devitrification. Oxidation results in the decrease of magnetically effective grain sizes of ferromagnetic titanomagnetites, which are surrounded by paramagnetic Ti-rich oxyexsolution lamellae, consequently reducing the saturation magnetization J s . Vertical variation in titanomagnetite textures requires careful selection of the sampling position in an ignimbrite deposit if magnetic properties are to be determined.

[1]  Robert F. Butler,et al.  Paleomagnetism: Magnetic Domains to Geologic Terranes , 1991 .

[2]  R. Aragon,et al.  Cation diffusion in titanomagnetites , 1984 .

[3]  Jean-Luc Froger,et al.  Neogene ignimbrites of the Nevsehir plateau (Central Turkey): stratigraphy, distribution and source constraints , 1994 .

[4]  J. Devine,et al.  Magma Storage Region Processes Inferred from Geochemistry of Fe–Ti Oxides in Andesitic Magma, Soufrière Hills Volcano, Montserrat, W.I. , 2003 .

[5]  G. Lofgren Experimentally Produced Devitrification Textures in Natural Rhyolitic Glass , 1971 .

[6]  A. Tomiya,et al.  Evolution of the Magma Chamber beneath Usu Volcano since 1663: a Natural Laboratory for Observing Changing Phenocryst Compositions and Textures , 2005 .

[7]  Peter Kokelaar,et al.  Pyroclastic density currents and the sedimentation of ignimbrites , 2002 .

[8]  B. W. Evans,et al.  Experimental determination of coexisting iron–titanium oxides in the systems FeTiAlO, FeTiAlMgO, FeTiAlMnO, and FeTiAlMgMnO at 800 and 900°C, 1–4 kbar, and relatively high oxygen fugacity , 2006 .

[9]  J. Walker,et al.  Magnetite (U Th)/He dating and its application to the geochronology of intermediate to mafic volcanic rocks , 2007 .

[10]  R. Schumacher,et al.  The Kizilkaya ignimbrite — an unusual low-aspect-ratio ignimbrite from Cappadocia, central Turkey , 1996 .

[11]  D. Lattard,et al.  The Titanomagnetite–Ilmenite Equilibrium: New Experimental Data and Thermo-oxybarometric Application to the Crystallization of Basic to Intermediate Rocks , 2008 .

[12]  E. Cañón‐Tapia,et al.  Magnetic petrofabric of igneous rocks: Lessons from pyroclastic density current deposits and obsidians , 2014 .

[13]  A. Kontny,et al.  Rapid surficial oxidation of synthetic Fe‐Ti oxides at high temperature: Observations and consequences for magnetic measurements , 2012 .

[14]  S. Haggerty Oxidation of opaque mineral oxides in basalts , 1976 .

[15]  R. Cas,et al.  Heterogeneous pumice populations in the 2.08-Ma Cerro Galán Ignimbrite: implications for magma recharge and ascent preceding a large-volume silicic eruption , 2011 .

[16]  Erkan Aydar,et al.  Correlation of ignimbrites in the central Anatolian volcanic province using zircon and plagioclase ages and zircon compositions , 2012 .

[17]  P. Ramdohr Die Erzmineralien und ihre Verwachsungen , 1955 .

[18]  Mark S. Ghiorso,et al.  Thermodynamics of Rhombohedral Oxide Solid Solutions and a Revision of the FE-TI Two-Oxide Geothermometer and Oxygen-Barometer , 2008, American Journal of Science.

[19]  N. Ishikawa,et al.  Iron–titanium oxide minerals in block-and-ash-flow deposits: implications for lava dome oxidation processes , 2004 .

[20]  M. Bebbington,et al.  Relating magma composition to eruption variability at andesitic volcanoes: A case study from Mount Taranaki, New Zealand , 2011 .

[21]  A. Zanchi,et al.  Continental arc volcanism and tectonic setting in Central Anatolia, Turkey , 1988 .

[22]  S. Levi,et al.  Magnetic property zonation in a thick lava flow , 1992 .

[23]  O. Tatar,et al.  Palaeomagnetism and magnetic properties of the Cappadocian ignimbrite succession, central Turkey and Neogene tectonics of the Anatolian collage , 2002 .

[24]  Hervé Diot,et al.  Interpretation of anisotropy of magnetic susceptibility fabric of ignimbrites in terms of kinematic and sedimentological mechanisms: An Anatolian case-study , 1998 .

[25]  M. Bursik,et al.  Geochemical fingerprinting of wilson Creek formation tephra layers (Mono Basin, California) using titanomagnetite compositions , 2014 .

[26]  A. Buddington,et al.  Iron-Titanium Oxide Minerals and Synthetic Equivalents , 1964 .

[27]  R. A. Bailey,et al.  Cooling, degassing and compaction of rhyolitic ash flow tuffs: a computational model , 1995 .

[28]  A. Agrò,et al.  Magnetic fabric of ignimbrites: a case study from the Central Anatolian Volcanic Province , 2014 .

[29]  J. Pennec Identifying ash flow sources with directional data: An application to the Kizilkaya ignimbrite, central Anatolia , 2000 .

[30]  G. Keating The role of water in cooling ignimbrites , 2005 .

[31]  R. Cas,et al.  Distribution and significance of crystalline, perlitic and vesicular textures in the Ordovician Garth Tuff (Wales) , 1998 .

[32]  Jean-Luc Froger,et al.  Stratigraphy and age of the Cappadocia ignimbrites, Turkey: reconciling field constraints with paleontologic, radiochronologic, geochemical and paleomagnetic data , 2005 .

[33]  M. Bebbington,et al.  Using titanomagnetite textures to elucidate volcanic eruption histories , 2008 .

[34]  E. Mcclelland,et al.  Palaeotemperature determinations for the 1.8-ka Taupo ignimbrite, New Zealand, and implications for the emplacement history of a high-velocity pyroclastic flow , 2004 .

[35]  Marc M. Hirschmann,et al.  Mg/Mn partitioning as a test for equilibrium between coexisting Fe-Ti oxides , 1988 .