OntoWEDSS - An Ontology-based Environmental Decision-Support System for the management of Wastewater treatment plants

Les contribucions d'aquesta tesi uneixen dues disciplines: ciencies ambientals (especificament, gestio d'aigues residuals) i informatica (especificament, intel·ligencia artificial). El tractament d'aigues residuals com a disciplina opera fent servir un rang de diferents enfocaments i metodes que inclouen: control manual, control automatic on-line, modelat numeric o no-numeric, models estadistics i simulacions. La tesi caracteritza la recerca interdisciplinaria de tecniques d'intel·ligencia artificial (raonament basat en regles, raonament basat en casos, ontologies i planificacio) a sistemes de suport a la decisio a l'entorn ambiental. El disseny de l'arquitectura d'aquesta aplicacio, el sistema OntoWEDSS, augmenta els sistemes clasics de raonament existents (raonament basat en regles i basat en casos) amb una ontologia de domini per a la gestio de plantes de tractament d'aigues residuals. La integracio de l'ontologia WaWO recentment creada proporciona a OntoWEDSS una major flexibilitat en la capacitat de gestio. La construccio del sistema de suport a la decisio OntoWEDSS es basa en l'estudi d'un cas especific, pero el sistema tambe es d'interes general ja que l'arquitectura basada en l'ontologia pot aplicar-se a qualsevol estacio depuradora i, a un nivell apropiat d'abstraccio, a altres dominis ambientals. El sistema OntoWEDSS millora la diagnosi de l'estat de l'estacio depuradora, proporciona suport a la solucio de complexes problemes relacionats amb aigues residuals, i facilita el modelatge del coneixement i la seva reutilitzacio mitjancant l'ontologia WaWO. En particular, a la investigacio s'han aconseguit els seguents objectius: (1) la millora del modelatge de la informacio sobre processos de tractament d'aigues residuals i la clarificacio de part de la confusio existent en la terminologia del domini, (2) la incorporacio de coneixement microbiologic (referent al proces del tractament i modelat mitjancant una ontologia) dins del proces de raonament, (3) la creacio d'un sistema de suport a la decisio amb tres nivells (percepcio, diagnosi i suport a la decisio) que combina coneixement mitjancant una nova integracio entre KBSs i ontologies, proporcionant millors resultats, (4) la eliminacio d'obstacles existents en el raonament, obtinguda utilitzant el nou coneixement microbiologic codificat a l'estructura jerarquica i a les relacions de l'ontologia, (5) la representacio de relacions causa-efecte, degut a la implementacio d'un conjunt de relacions que permeten a l'ontologia deduir automaticament la resposta a questions sobre el domini d'aigues residuals. OntoWEDSS esta implementada en el llenguatge de programacio LISP, fent servir el software Allegro Common LISP. S'ha dut a terme una avaluacio focalitzada del sistema, basada en la valoracio de la capacitat de resposta a situacions problematiques especifiques, obtenint-se bons resultats. ------------------------------------------------------------------------------------------------------------------------------------------------------------ Resumen Las contribuciones de esta tesis unen dos disciplinas: ciencias ambientales (especificamente, gestion de aguas residuales) e informatica (especificamente, inteligencia artificial). El tratamiento de aguas residuales como disciplina opera utilizando un rango de diferentes enfoques y metodos que incluye: control automatico on-line, modelado numerico o no-numerico, razonamiento basado en reglas, razonamiento basado en casos, soporte a la decision y planificacion. La tesis caracteriza una aplicacion interdisciplinaria de tecnicas de inteligencia artificial a sistemas de soporte a la decision en el dominio ambiental. El diseno de la arquitectura de esta aplicacion, el sistema OntoWEDSS, aumenta los sistemas hibridos de razonamiento ya existentes (razonamiento basado en reglas y basado en casos) con una ontologia de dominio para la gestion de plantas de tratamiento de aguas residuales. La integracion de la ontologia WaWO, de nueva creacion, proporciona a OntoWEDSS una mayor flexibilidad en la capacidad de gestion. La construccion del sistema de soporte a la decision OntoWEDSS se basa en el estudio de un caso especifico, pero el sistema resulta tambien es de interes general puesto que la arquitectura basada en ontologias puede aplicarse a cualquier planta de tratamiento de aguas residuales y, a un nivel apropiado de abstraccion, a otros dominios ambientales. El sistema OntoWEDSS mejora la diagnosis del estado de la planta de tratamiento, proporciona soporte a la resolucion de complejos problemas relacionados con aguas residuales, y facilita el modelado del conocimiento y su reutilizacion mediante la ontologia WaWO. En particular, la investigacion ha alcanzado los siguientes objetivos: (1) la mejora del modelado de la informacion sobre procesos de tratamiento de aguas residuales y la clarificacion de parte de la confusion existente en la terminologia relacionada, (2) la incorporacion de conocimiento microbiologico (referente al proceso del tratamiento y modelado mediante una ontologia) dentro del proceso de razonamiento, (3) la creacion de un sistema de soporte a la decision con tres estratos (percepcion, diagnosis y soporte a la decision) que combina conocimiento mediante una novedosa integracion entre KBSs y ontologias, proporcionando mejores resultados, (4) la eliminacion de obstaculos existentes en el razonamiento, hallada utilizando el nuevo conocimiento microbiologico codificado en la estructura jerarquica y las relaciones de la ontologia, (5) la representacion de relaciones causa-efecto, debido a la implementacion de un conjunto de relaciones que permiten a la ontologia deducir automaticamente la respuesta a cuestiones sobre el dominio de aguas residuales. OntoWEDSS esta implementada en el lenguaje de programacion LISP, usando el software Allegro Common LISP. Se ha llevado a cabo una evaluacion enfocada del sistema, basada en la valoracion de la capacidad de respuesta a situaciones problematicas especificas, obteniendose buenos resultados. -----------------------------------------------------------------------------------------------------------------------------------------------------------

[1]  Nicola Guarino,et al.  Formal Ontology and Information Systems , 1998 .

[2]  Luc Steels,et al.  Components of Expertise , 1990, AI Mag..

[3]  L. Lijklema Principles of environmental science and technology , 1983 .

[4]  Timothy W. Finin,et al.  Enabling Technology for Knowledge Sharing , 1991, AI Mag..

[5]  Kurt Fedra,et al.  Expert Systems in Water Resources Simulation and Optimization , 1993 .

[6]  Miquel Sànchez-Marrè,et al.  Environmental Decision Support Systems , 2001 .

[7]  P. Madoni,et al.  A sludge biotic index (SBI) for the evaluation of the biological performance of activated sludge plants based on the microfauna analysis , 1994 .

[8]  J. Wanner Activated Sludge: Bulking and Foaming Control , 1994 .

[9]  M Koster DEVELOPMENT AND APPLICATION OF COMPUTER TECHNIQUES TO ENVIRONMENTAL STUDIES , 2002 .

[10]  John F. Sowa,et al.  Knowledge representation: logical, philosophical, and computational foundations , 2000 .

[11]  Sven Erik Jørgensen,et al.  Principles of environmental science and technology , 1981 .

[12]  Juan A. Baeza,et al.  Knowledge-based supervision and control of wastewater treatment plant: a real-time implementation , 2000 .

[13]  Michael Gruninger,et al.  Methodology for the Design and Evaluation of Ontologies , 1995, IJCAI 1995.

[14]  Asunción Gómez-Pérez,et al.  METHONTOLOGY: From Ontological Art Towards Ontological Engineering , 1997, AAAI 1997.

[15]  Balakrishnan Chandrasekaran,et al.  What are ontologies, and why do we need them? , 1999, IEEE Intell. Syst..

[16]  Miquel Sànchez-Marrè,et al.  Semi-automatic learning with quantitative and qualitative features , 2002 .

[17]  Daniel E. O'Leary Impediments in the use of explicit ontologies for KBS development , 1997, Int. J. Hum. Comput. Stud..

[18]  G. Daigger,et al.  Manual on the causes and control of activated sludge bulking and foaming , 1992 .

[19]  C. A. Vassiliadis,et al.  Applying hybrid artificial intelligence techniques in wastewater treatment , 1998 .

[20]  Venkat Venkatasubramanian Towards Integrated Process Supervision: Current Status and Future Directions , 1994 .

[21]  Heiner Stuckenschmidt Using OIL for Intelligent Information Integration , 2000 .

[22]  K. VanLehn Architectures for Intelligence , 1999 .

[23]  Gilles G. Patry,et al.  Dynamic Modeling and Expert Systems in Wastewater Engineering , 1989 .

[24]  Tesi Doctoral,et al.  DAI-DEPUR: AN INTEGRATED SUPERVISORY MULTI-LEVEL ARCHITECTURE FOR WASTEWATER TREATMENT PLANTS , 1996 .

[25]  Michael R. Genesereth,et al.  Knowledge Interchange Format , 1991, KR.

[26]  Michael Uschold,et al.  The Enterprise Ontology , 1998, The Knowledge Engineering Review.

[27]  Reid G. Smith,et al.  Fundamentals of expert systems , 1988 .

[28]  Michael Uschold,et al.  Putting ontologies to use , 1998, The Knowledge Engineering Review.

[29]  Leonard Ortolano,et al.  Expert System for Sewer Network Maintenance: Validation Issues , 1990 .

[30]  Miquel Sànchez-Marrè,et al.  Learning and Adaptation in Wastewater Treatment Plants Through Case–Based Reasoning , 1997 .

[31]  Asunción Gómez-Pérez,et al.  Reference Ontology and (ONTO)2 Agent: The Ontology Yellow Pages , 2000, Knowledge and Information Systems.

[32]  Bob J. Wielinga,et al.  Using explicit ontologies in KBS development , 1997, Int. J. Hum. Comput. Stud..

[33]  V. Yevjevich,et al.  Stochastic hydrology and its use in water resources systems simulation and optimization , 1993 .

[34]  Avelino J. Gonzalez,et al.  The Engineering of Knowledge-Based Systems , 1993 .

[35]  Cliff Joslyn A possibilistic approach to qualitative model-based diagnosis , 1994 .

[36]  Carole D. Hafner,et al.  The State of the Art in Ontology Design: A Survey and Comparative Review , 1997, AI Mag..

[37]  Kurt Fedra,et al.  Decision support for natural resources management: models, GIS, and expert systems , 1995 .

[38]  Edward H. Shortliffe,et al.  A model of inexact reasoning in medicine , 1990 .

[39]  Raymond E. Levitt Knowledge-based systems in engineering , 1991 .

[40]  Angus R. Simpson,et al.  Expert system for water treatment plant operation , 1996 .

[41]  R GruberThomas Toward principles for the design of ontologies used for knowledge sharing , 1995 .

[42]  Miquel Sànchez-Marrè,et al.  WaWO: an ontology embedded into an environmental decision-support system for wastewater treatment plantmanagement , 2000 .

[43]  Lawrence Birnbaum,et al.  The Organization of Expert Systems, A Tutorial , 1982, Artif. Intell..

[44]  Michael Uschold,et al.  Where are the Killer Apps , 1998 .

[45]  Tom M. Mitchell,et al.  In Architectures for Intelligence , 1989 .

[46]  Steffen Staab,et al.  Ontology Engineering beyond the Modeling of Concepts and Relations , 2000 .

[47]  James A. Hendler,et al.  Readings in Planning , 1994 .

[48]  Gunnar Hartvigsen,et al.  Co-operation in a distributed artificial intelligence environment—The StormCast application , 1990 .

[49]  David Stuart Robertson Pitfalls of formality in early system design , 2002, Sci. Comput. Program..

[50]  Nicola Guarino,et al.  Ontologies and Knowledge Bases. Towards a Terminological Clarification , 1995 .

[51]  Michael Uschold,et al.  Ontologies: principles, methods and applications , 1996, The Knowledge Engineering Review.

[52]  Robert M. MacGregor,et al.  The Evolving Technology of Classification-Based Knowledge Representation Systems , 1991, Principles of Semantic Networks.

[53]  John F. Sowa,et al.  Principles of semantic networks , 1991 .

[54]  Vice President,et al.  An Introduction to Expert Systems , 1989 .

[55]  James C. Lester Generating Natural Language Explanations from Large-Scale Knowledge Bases , 1994 .

[56]  J. Ball Memes as replicators , 1984 .

[57]  Carole A. Goble,et al.  An ontology for bioinformatics applications , 1999, Bioinform..

[58]  V. R. Benjamins,et al.  Overview of Knowledge Sharing and Reuse Components: Ontologies and Problem-Solving Methods , 1999, IJCAI 1999.

[59]  Andrea G. Capodaglio,et al.  Time Series Analysis Models of Activated Sludge Plants , 1991 .

[60]  Peter D. Karp,et al.  The Generic Frame Protocol , 1995, IJCAI.

[61]  Josep Puyol-Gruart,et al.  Milord II. Language description. , 1997 .

[62]  Asunción Gómez-Pérez,et al.  Criteria to Verify Knowledge Sharing Technology , 1995 .

[63]  Ian Horrocks,et al.  OIL in a Nutshell , 2000, EKAW.

[64]  Asunción Gómez-Pérez,et al.  Towards a Method to Conceptualize Domain Ontologies , 1996 .

[65]  Anne Shepherd,et al.  Water-Supply System Operations: Critiquing Expert-System Approach , 1996 .

[66]  Michael Kifer,et al.  Logical foundations of object-oriented and frame-based languages , 1995, JACM.

[67]  C SchankRoger,et al.  Dynamic Memory: A Theory of Reminding and Learning in Computers and People , 1983 .

[68]  Robert J. K. Jacob,et al.  User interface , 2002 .

[69]  Miquel Sànchez i Marrè Dai-depur: an integrated supervisory multi-level architecture for wastewater treatment plants , 1996 .

[70]  David H. D. Warren,et al.  An Efficient Easily Adaptable System for Interpreting Natural Language Queries , 1982, CL.

[71]  F. E. Finch,et al.  A robust event-oriented methodology for diagnosis of dynamic process systems , 1990 .

[72]  S. Ranji Ranjithan,et al.  Genetic algorithm-based optimization in the development of tropospheric ozone control strategies: least cost, multiobjective, alternative generation, and chance-constrained applications , 1998 .

[73]  Jan L. Top,et al.  Engineering ontologies , 1997, Int. J. Hum. Comput. Stud..

[74]  G. L. Steele Common Lisp , 1990 .

[75]  Guus Schreiber,et al.  Knowledge Engineering and Management: The CommonKADS Methodology , 1999 .

[76]  Nikolaos M. Avouris,et al.  Cooperating knowledge-based systems for environmental decision support , 1995, Knowl. Based Syst..

[77]  Ramanathan V. Guha,et al.  Building Large Knowledge-Based Systems: Representation and Inference in the Cyc Project , 1990 .

[78]  Michael Uschold,et al.  Knowledge level modelling: concepts and terminology , 1998, The Knowledge Engineering Review.

[79]  J. E. Casaday Wastewater treatment systems. , 1992, Textile rental.

[80]  Thomas R. Gruber,et al.  A translation approach to portable ontology specifications , 1993, Knowl. Acquis..

[81]  G. Calori,et al.  FRAME: a Knowledge-based Tool to Support the Choice of the Right Air Pollution Model , 1993, CSEIA.

[82]  George Stephanopoulos,et al.  Artificial intelligence in process engineering—current state and future trends , 1990 .

[83]  J. R. Wright,et al.  Expert Systems in Environmental Planning , 1993 .

[84]  N. J. I. Mars Towards Very Large Knowledge Bases , 1995 .

[85]  Asunción Gómez-Pérez,et al.  (KA)2: building ontologies for the Internet: a mid-term report , 1999, Int. J. Hum. Comput. Stud..

[86]  Yannis Kalfoglou,et al.  Deploying ontologies in software design , 2000 .

[87]  Mike Uschold,et al.  A Framework for Understanding and Classifying Ontology Applications , 1999 .

[88]  John F. Andrews,et al.  KNOWLEDGE BASED SYSTEMS FOR OPERATION OF WASTEWATER TREATMENT PROCESSES , 1990 .

[89]  Mark A. Musen,et al.  The Knowledge Model of Protégé-2000: Combining Interoperability and Flexibility , 2000, EKAW.

[90]  William J. Clancey,et al.  The Epistemology of a Rule-Based Expert System - A Framework for Explanation , 1981, Artif. Intell..

[91]  Miquel Sànchez-Marrè,et al.  Sustainable case learning for continuos domains , 1999, Environ. Model. Softw..

[92]  J. Monod,et al.  Recherches sur la croissance des cultures bactériennes , 1942 .

[93]  Fernandez Lopez,et al.  Overview Of Methodologies For Building Ontologies , 1999, IJCAI 1999.

[94]  Miquel Sànchez-Marrè,et al.  Knowledge Management in Environmental Decision Support Systems , 2001, AI Commun..

[95]  Judith M. Hushon Expert systems for environmental problems , 1987 .

[96]  Stan Matwin,et al.  Machine Learning and Planning for Data Management in Forestry , 1995, IEEE Expert.

[97]  Mark S. Fox,et al.  The Role of Competency Questions in Enterprise Engineering , 1995 .

[98]  H. S. Pinto Knowledge Sharing and Reuse , 2022 .

[99]  Ramanathan V. Guha,et al.  CYC: A Midterm Report , 1990, AI Mag..

[100]  Jehng-Jung Kao,et al.  An expert system for selecting and sequencing wastewater treatment processes , 1996 .

[101]  Richard Fikes,et al.  Tools for Assembling Modular Ontologies in Ontolingua , 1997, AAAI/IAAI.

[102]  Leslie Pack Kaelbling,et al.  An Architecture for Intelligent Reactive Systems , 1987 .

[103]  Farhi Marir,et al.  Case-based reasoning: a categorized bibliography , 1994, The Knowledge Engineering Review.

[104]  Peter D. Karp,et al.  OKBC: A Programmatic Foundation for Knowledge Base Interoperability , 1998, AAAI/IAAI.

[105]  Angi Voß,et al.  The AI workbench BABYLON - an open and portable development environment for expert systems , 1992, Knowledge-based systems book series.

[106]  Luigi Ceccaroni,et al.  WaRP: A Reactive Planner Integrated in an Environmental Decision Support System fo Wastewater Treatment Plant Management , 2000, ECAI.

[107]  Bruce W. Porter,et al.  Automated Modeling of Complex Systems to Answer Prediction Questions , 1997, Artif. Intell..

[108]  A. Gomez-Perez,et al.  Some ideas and examples to evaluate ontologies , 1995, Proceedings the 11th Conference on Artificial Intelligence for Applications.

[109]  Robert Mac Gregor,et al.  THE EVOLVING TECHNOLOGY OF CLASSIFICATION-BASED KNOWLEDGE REPRESENTATION SYSTEMS , 1991 .

[110]  Joaquim Comas Matas Development, implementation and evaluation of an activated sludge supervisory system for the Granollers WWTP , 2003 .

[111]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[112]  Dieter Fensel,et al.  Knowledge Engineering: Principles and Methods , 1998, Data Knowl. Eng..

[113]  John A. Bateman,et al.  The Generalized Upper Model Knowledge Base: Organization and Use , 2002 .

[114]  Luigi Ceccaroni Integration of a rule-based expert system, a case-based reasoner and an ontological knowledge-base in the wastewater domain , 2000 .

[115]  Ashwin Ram,et al.  Integrated Learning Architectures , 1993, ECML.

[116]  D. Sriram,et al.  Applications of Artificial Intelligence in Engineering Problems , 1986 .

[117]  Antonio Badia,et al.  Ontologies , 2001, Springer Berlin Heidelberg.

[118]  Frederick Hayes-Roth The Knowledge-Based Expert System: A Tutorial , 1984, Computer.

[119]  Miquel Sànchez-Marrè,et al.  DAI-DEPUR: an integrated and distributed architecture for wastewater treatment plants supervision , 1996, Artif. Intell. Eng..

[120]  M. Sasikumar Book review: The AI Workbench BABYLON: An open and portable development environment for expert systems by: T Christaller, F Di Primio, U Schnepf and A Voss (ed) (Academic Press) , 1993, SGAR.

[121]  Asunción Gómez-Pérez,et al.  Applications of Ontologies and Problem-Solving Methods , 1999, AI Mag..

[122]  John N. McHenry,et al.  The Environmental Decision Support System:A Capable And Versatile Contribution To ACommunity Modeling And Analysis System ForAir Quality , 1998 .

[123]  W. N. Borst,et al.  Construction of Engineering Ontologies for Knowledge Sharing and Reuse , 1997 .

[124]  Mark R. Cutkosky,et al.  PACT: an experiment in integrating concurrent engineering systems , 1993, Computer.

[125]  Ian Horrocks,et al.  The relation between ontologies and schema-languages: Translating OIL-specifications in XML Schema. , 2000 .

[126]  R. E. Leffel Process Design Manual: Wastewater Treatment Facilities for Sewered Small Communities. , 1977 .

[127]  Gennady Osipov,et al.  Intelligent system for fish stock prediction and allowable catch evaluation , 1999, Environ. Model. Softw..

[128]  M. Fernández-López,et al.  Overview of methodologies for building ontologies , 1999, IJCAI 1999.

[129]  Anjo Anjewierden,et al.  The KACTUS View on the 'O' word , 1995, IJCAI 1995.

[130]  Francisco Azuaje,et al.  Retrieval strategies for case-based reasoning: a categorised bibliography , 2000, The Knowledge Engineering Review.

[131]  Nicola Guarino,et al.  Editorial: The role of formal ontology in the information technology , 1995, Int. J. Hum. Comput. Stud..

[132]  Richard Reviewer-Granger Unified Theories of Cognition , 1991, Journal of Cognitive Neuroscience.

[133]  Richard Fikes,et al.  The Ontolingua Server: a tool for collaborative ontology construction , 1997, Int. J. Hum. Comput. Stud..

[134]  Richard Fikes,et al.  Distributed repositories of highly expressive reusable ontologies , 1999, IEEE Intell. Syst..