On multistep-Galerkin discretizations of semilinear hyperbolic and parabolic equations

Henceforth, it will be assumed that (1.1) has a unique solution U. Precise hypotheses on the required smoothness of the solution will be made when needed. For s a nonnegative integer, let H” = H”(Q) be the Sobolev space W,“(R) of real-valued functions on R and let 11. /Is denote its usual norm. Let fi’ = ii’(Q) = {u E H’ :ulm = 0). Th e inner product on L* = L’(Q) is denoted by (. , .) and the associated norm by 11. /I. Let also 11. II ,.,’ d enote the norm on L” = L”(R). If (X, 11 I( ,y) is a Banach space and 1 d p d r;o, E(0, t; X) will be the Banach space of (classes of) strongly measurable functions I;: (0, t) -+ X such that

[1]  Jr. H. H. Rachford Two-Level Discrete-Time Galerkin Approximations for Second Order Nonlinear Parabolic Partial Differential Equations , 1973 .

[2]  G. A. Baker Error Estimates for Finite Element Methods for Second Order Hyperbolic Equations , 1976 .

[3]  J. Lambert Computational Methods in Ordinary Differential Equations , 1973 .

[4]  Galerkin's method for some highly nonlinear problems , 1977 .

[5]  Marie-Noelle Le Roux,et al.  Méthodes multipas pour des équations paraboliques non linéaires , 1980 .

[6]  J. Douglas,et al.  Galerkin Methods for Parabolic Equations , 1970 .

[7]  Olavi Nevanlinna,et al.  On the numerical integration of nonlinear initial value problems by linear multistep methods , 1977 .

[8]  P. Henrici Discrete Variable Methods in Ordinary Differential Equations , 1962 .

[9]  J. C. Burkill,et al.  Ordinary Differential Equations , 1964 .

[10]  M. Wheeler A Priori L_2 Error Estimates for Galerkin Approximations to Parabolic Partial Differential Equations , 1973 .

[11]  Colin W. Cryer A new class of highly-stable methods:A0-stable methods , 1973 .

[12]  Richard E. Ewing,et al.  Incomplete Iteration for Time-Stepping a Galerkin Method for a Quasilinear Parabolic Problem , 1979 .

[13]  Olavi Nevanlinna,et al.  On the convergence of difference approximations to nonlinear contraction semigroups in Hilbert spaces , 1978 .

[14]  Graeme Fairweather,et al.  Three level Galerkin methods for parabolic equations , 1974 .

[15]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[16]  L. R. Scott,et al.  Optimal ^{∞} estimates for the finite element method on irregular meshes , 1976 .

[17]  Miloš Zlámal Finite element multistep discretizations of parabolic boundary value problems , 1975 .

[18]  Multistep-Galerkin methods for hyperbolic equations , 1979 .

[19]  Miloš Zlámal,et al.  Finite element methods for nonlinear parabolic equations , 1977 .

[20]  T. Dupont Galerkin Methods for First Order Hyperbolics: An Example , 1973 .

[21]  E. Gekeler Linear Multistep Methods and Galerkin Procedures for Initial Boundary Value Problems , 1976 .

[22]  J. Löfström,et al.  Convergence analysis of finite difference schemes for semi-linear initial-value problems , 1976 .

[23]  T. Dupont $L^2 $-Estimates for Galerkin Methods for Second Order Hyperbolic Equations , 1973 .

[24]  Vidar Thomée,et al.  On Galerkin Methods in Semilinear Parabolic Problems , 1975 .