Quantum computing implementations with neutral particles

We review quantum information processing with cold neutral particles, that is, atoms or polar molecules. First, we analyze the best suited degrees of freedom of these particles for storing quantum information, and then we discuss both single- and two-qubit gate implementations. We focus our discussion mainly on collisional quantum gates, which are best suited for atom-chip-like devices, as well as on gate proposals conceived for optical lattices. Additionally, we analyze schemes both for cold atoms confined in optical cavities and hybrid approaches to entanglement generation, and we show how optimal control theory might be a powerful tool to enhance the speed up of the gate operations as well as to achieve high fidelities required for fault tolerant quantum computation.

[1]  Jacob F. Sherson,et al.  Quantum computation architecture using optical tweezers , 2011 .

[2]  P. Grangier,et al.  Two-dimensional transport and transfer of a single atomic qubit in optical tweezers , 2007, 0705.0312.

[3]  C. Gardiner,et al.  Cold Bosonic Atoms in Optical Lattices , 1998, cond-mat/9805329.

[4]  J. Schmiedmayer,et al.  Strong magnetic coupling of an ultracold gas to a superconducting waveguide cavity. , 2008, Physical review letters.

[5]  C. Salomon,et al.  Manipulation of Motional Quantum States of Neutral Atoms , 1999 .

[6]  M. Cirone,et al.  A simple quantum gate with atom chips , 2005, quant-ph/0505194.

[7]  P. Zoller,et al.  Mesoscopic Rydberg gate based on electromagnetically induced transparency. , 2008, Physical review letters.

[8]  T. Hänsch,et al.  Controlled collisions for multi-particle entanglement of optically trapped atoms , 2003, Nature.

[9]  Measurement induced entanglement and quantum computation with atoms in optical cavities. , 2003, Physical review letters.

[10]  K. Mølmer,et al.  Quantum computing with a single molecular ensemble and a Cooper pair box , 2007, 0711.0606.

[11]  Tommaso Calarco,et al.  Optimal control technique for many-body quantum dynamics. , 2010, Physical review letters.

[12]  J. Schmiedmayer,et al.  Quantum information processing with neutral atoms on an atom chip , 2002 .

[13]  David J. Tannor,et al.  Loading a Bose-Einstein condensate onto an optical lattice: An application of optimal control theory to the nonlinear Schrödinger equation , 2002 .

[14]  I. B. Spielman,et al.  Field-sensitive addressing and control of field-insensitive neutral-atom qubits , 2009, 0902.3213.

[15]  Tommaso Calarco,et al.  The quantum speed limit of optimal controlled phasegates for trapped neutral atoms , 2011, 1103.6050.

[16]  Innsbruck,et al.  Entangling ions in arrays of microscopic traps , 2001 .

[17]  Jakob Reichel,et al.  Coherent manipulation of Bose–Einstein condensates with state-dependent microwave potentials on an atom chip , 2009, 0904.4837.

[18]  Jakob Reichel,et al.  Atom chips. , 2005, Scientific American.

[19]  Eric Charron,et al.  Optimizing a phase gate using quantum interference. , 2002, Physical review letters.

[20]  Guo,et al.  One-dimensional laser cooling below the Doppler limit. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[21]  Peter Rosenbusch,et al.  Spin self-rephasing and very long coherence times in trapped atomic ensembles , 2010, CLEO: 2011 - Laser Science to Photonic Applications.

[22]  Tilo Steinmetz,et al.  Cavity-based single atom preparation and high-fidelity hyperfine state readout. , 2010, Physical review letters.

[23]  Klaus Mølmer,et al.  Holographic quantum computing. , 2008, Physical review letters.

[24]  I. Lesanovsky,et al.  Radiofrequency-dressed-state potentials for neutral atoms , 2006 .

[25]  S. Yelin,et al.  Schemes for robust quantum computation with polar molecules: analysis of experimental feasibility , 2006, quant-ph/0602030.

[26]  Schoen,et al.  Superconductor-Mott-insulator transition in Bose systems with finite-range interactions. , 1993, Physical review. B, Condensed matter.

[27]  J. Cirac,et al.  Dipole blockade and quantum information processing in mesoscopic atomic ensembles. , 2000, Physical review letters.

[28]  Gardiner,et al.  Decoherence, continuous observation, and quantum computing: A cavity QED model. , 1995, Physical review letters.

[29]  Joan P. Marler,et al.  Collective strong coupling with ion Coulomb crystals in an optical cavity , 2009, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[30]  Robert J Schoelkopf,et al.  Storage of multiple coherent microwave excitations in an electron spin ensemble. , 2009, Physical review letters.

[31]  Petrov,et al.  Regimes of quantum degeneracy in trapped 1D gases , 2000, Physical review letters.

[32]  J Wrachtrup,et al.  Strong coupling of a spin ensemble to a superconducting resonator. , 2010, Physical review letters.

[33]  R. de Vivie-Riedle,et al.  Quantum computation with vibrationally excited molecules. , 2002, Physical review letters.

[34]  S. Yelin,et al.  Phase gate and readout with an atom/molecule hybrid platform , 2009, 0908.4558.

[35]  D DeMille Quantum computation with trapped polar molecules. , 2002, Physical review letters.

[36]  R. Schoelkopf,et al.  The radio-frequency single-electron transistor (RF-SET): A fast and ultrasensitive electrometer , 1998, Science.

[37]  M. Steffen,et al.  Measurement of the Entanglement of Two Superconducting Qubits via State Tomography , 2006, Science.

[38]  D. Hunger,et al.  Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip , 2007, Nature.

[39]  Dexter Kozen,et al.  New , 2020, MFPS.

[40]  Andrew G. Glen,et al.  APPL , 2001 .

[41]  R J Schoelkopf,et al.  Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits. , 2006, Physical review letters.

[42]  Neutral atom quantum register. , 2004, Physical review letters.

[43]  D. Weiss,et al.  Imaging single atoms in a three dimensional array , 2007 .

[44]  Immanuel Bloch,et al.  Single-atom-resolved fluorescence imaging of an atomic Mott insulator , 2010, Nature.

[45]  M. Saffman,et al.  Quantum computing with collective ensembles of multilevel systems. , 2007, Physical review letters.

[46]  Immanuel Bloch,et al.  Single-spin addressing in an atomic Mott insulator , 2011, Nature.

[47]  G. Birkl,et al.  Coherent transport of atomic quantum states in a scalable shift register. , 2009, Physical review letters.

[48]  Maier,et al.  Controlling cold atoms using nanofabricated surfaces: atom chips , 1999, Physical review letters.

[49]  Wolfgang Ertmer,et al.  Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits. , 2002 .

[50]  F. Schmidt-Kaler,et al.  Optimization of segmented linear Paul traps and transport of stored particles , 2006, quant-ph/0607217.

[51]  P. Zoller,et al.  Quantum computing with alkaline-Earth-metal atoms. , 2008, Physical review letters.

[52]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[53]  Thomas G. Walker,et al.  Quantum information with Rydberg atoms , 2009, 0909.4777.

[54]  A. S. Mouritzen,et al.  Conditional dynamics induced by new configurations for Rydberg dipole-dipole interactions , 2007, 0706.0147.

[55]  J. Cirac,et al.  Entangling neutral atoms for quantum information processing , 2000 .

[56]  Antoine Browaeys,et al.  Holographic generation of microtrap arrays for single atoms by use of a programmable phase modulator , 2004 .

[57]  Tilo Steinmetz,et al.  Quantum information processing in optical lattices and magnetic microtraps , 2006, quant-ph/0605163.

[58]  S. Olmschenk,et al.  Ion trap in a semiconductor chip , 2006 .

[59]  P. Milman,et al.  Quantum phase gate and controlled entanglement with polar molecules , 2006, quant-ph/0608182.

[60]  J. Raimond,et al.  Trapping and coherent manipulation of a Rydberg atom on a microfabricated device: a proposal , 2005, quant-ph/0506101.

[61]  Lukin,et al.  Fast quantum gates for neutral atoms , 2000, Physical review letters.

[62]  S. Yelin,et al.  Rydberg atom mediated polar molecule interactions: a tool for molecular-state conditional quantum gates and individual addressability. , 2011, Physical chemistry chemical physics : PCCP.

[63]  M. Scully,et al.  Quantum Computing Devices: Principles, Designs, and Analysis , 2006 .

[64]  D. Comparat,et al.  Observation of collective excitation of two individual atoms in the Rydberg blockade regime , 2008, 0810.2960.

[65]  P. Zoller,et al.  Quantum computing with neutral atoms , 1999, quant-ph/9904010.

[66]  M. Lukin,et al.  Capacitive coupling of atomic systems to mesoscopic conductors. , 2003, Physical review letters.

[67]  Klaus Mølmer,et al.  Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage. , 2008, Physical review letters.

[68]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[69]  Quentin Diot,et al.  Atom Michelson interferometer on a chip using a Bose-Einstein condensate. , 2005, Physical review letters.

[70]  Philipp Treutlein,et al.  Imaging of microwave fields using ultracold atoms , 2010, 1009.4651.

[71]  J. Cirac,et al.  Quantum Computing with Trapped Particles in Microscopic Potentials , 2000 .

[73]  G. Birkl,et al.  Micro traps for quantum information processing and precision force sensing , 2007 .

[74]  R J Schoelkopf,et al.  Quantum computing with an electron spin ensemble. , 2009, Physical review letters.

[75]  V. Krotov,et al.  Global methods in optimal control theory , 1993 .

[76]  M. Saffman,et al.  Observation of Rydberg blockade between two atoms , 2008, 0805.0758.

[77]  P. Zoller,et al.  Entanglement of Atoms via Cold Controlled Collisions , 1998, quant-ph/9810087.

[78]  Chaohong Lee,et al.  Quantum computation with diatomic bits in optical lattices (5 pages) , 2005, quant-ph/0502154.

[79]  M. Cirone,et al.  Theoretical analysis of a realistic atom-chip quantum gate (9 pages) , 2006 .

[80]  P. Milman,et al.  Erratum: Quantum phase gate and controlled entanglement with polar molecules [Phys. Rev. A 75, 033414 (2007)] , 2008 .

[81]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.

[82]  J. Mompart,et al.  Quantum computing in optical microtraps based on the motional states of neutral atoms , 2002 .

[83]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[84]  Tilo Steinmetz,et al.  Coherence in microchip traps. , 2004, Physical review letters.

[85]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[86]  QUANTUM CONTROL THEORY FOR DECOHERENCE SUPPRESSION IN QUANTUM GATES , 2007 .

[87]  R. B. Blakestad,et al.  Microfabricated surface-electrode ion trap for scalable quantum information processing. , 2006, Physical review letters.

[88]  M. Lewenstein,et al.  Pair-supersolid phase in a bilayer system of dipolar lattice bosons. , 2009, Physical review letters.

[89]  M. Zhan,et al.  Quantum gates with atomic ensembles on an atom chip , 2008 .

[90]  S. Montangero,et al.  Optimal control of atom transport for quantum gates in optical lattices , 2008, 0803.0183.

[91]  P. Zoller,et al.  Quantum computations with atoms in optical lattices: marker qubits and molecular interactions , 2004, quant-ph/0403197.

[92]  T. Calarco,et al.  Performance of quantum phase gates with cold trapped atoms , 2003 .

[93]  Columbus,et al.  One- and Two-Dimensional Optical Lattices on a Chip for Quantum Computing , 2004, physics/0401041.

[94]  Yun Li,et al.  Atom-chip-based generation of entanglement for quantum metrology , 2010, Nature.

[95]  Tommaso Calarco,et al.  Microwave potentials and optimal control for robust quantum gates on an atom chip , 2006 .

[96]  Thomas G. Walker,et al.  Demonstration of a neutral atom controlled-NOT quantum gate. , 2009, Physical review letters.

[97]  Markus Greiner,et al.  A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice , 2009, Nature.

[98]  I. Chuang,et al.  Microfabricated surface ion trap on a high-finesse optical mirror. , 2010, Optics letters.

[99]  T. Fernholz,et al.  Two-dimensional array of microtraps with atomic shift register on a chip , 2008, 0803.2151.

[100]  P. Hannaford,et al.  One-dimensional lattice of permanent magnetic microtraps for ultracold atoms on an atom chip , 2008, 0801.0624.

[101]  W Ertmer,et al.  Quantum computing with spatially delocalized qubits. , 2003, Physical review letters.

[102]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[103]  P. Zoller,et al.  A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators , 2006 .

[104]  Innsbruck,et al.  Quantum gates with neutral atoms: Controlling collisional interactions in time-dependent traps , 2000 .

[105]  M. Greiner,et al.  Probing the Superfluid–to–Mott Insulator Transition at the Single-Atom Level , 2010, Science.

[106]  Carlton M. Caves,et al.  QUANTUM LOGIC GATES IN OPTICAL LATTICES , 1999 .

[107]  Matthew P. A. Fisher,et al.  Boson localization and the superfluid‐insulator transition , 2008 .

[108]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[109]  W. Ertmer,et al.  Coherent manipulation of atomic qubits in optical micropotentials , 2007, quant-ph/0702085.

[110]  P Zoller,et al.  Interfacing quantum-optical and solid-state qubits. , 2004, Physical review letters.

[111]  L. H. Pedersen,et al.  Implementing a neutral atom Rydberg gate without populating the Rydberg state , 2007 .