On moving averages

We show that the moving arithmetic average is closely connected to a Gauss‐Seidel type fixed point method studied by Bauschke, Wang and Wylie, and which was observed to converge only numerically. Our analysis establishes a rigorous proof of convergence of their algorithm in a special case; moreover, the limit is explicitly identified. Moving averages in Banach spaces and Kolmogorov means are also studied. Furthermore, we consider moving proximal averages and epi-averages of convex functions.

[1]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[2]  S. R. Simanca,et al.  On Circulant Matrices , 2012 .

[3]  P. Borwein,et al.  Polynomials and Polynomial Inequalities , 1995 .

[4]  H. Attouch Variational convergence for functions and operators , 1984 .

[5]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[6]  Granger Econometrics,et al.  K-th Moving, Weighted and Exponential Moving Average for Time Series Forecasting Models , 2010 .

[7]  Heinz H. Bauschke,et al.  The resolvent average for positive semidefinite matrices , 2009, 0910.3705.

[8]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[9]  Heinz H. Bauschke,et al.  Fixed Points of Averages of Resolvents: Geometry and Algorithms , 2011, SIAM J. Optim..

[10]  E. T. Goodwin SOLUTION OF EQUATIONS AND SYSTEMS OF EQUATIONS (SECOND EDITION) , 1969 .

[11]  O. Krafft,et al.  Convergence of the powers of a circulant stochastic matrix , 1990 .

[12]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[13]  Heinz H. Bauschke,et al.  The Proximal Average: Basic Theory , 2008, SIAM J. Optim..

[14]  A. Ostrowski Solution of equations and systems of equations , 1967 .

[15]  Jonathan M. Borwein,et al.  Pi and the AGM , 1999 .

[16]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[17]  Jonathan M. Borwein,et al.  On the Solution of Linear Mean Recurrences , 2014, Am. Math. Mon..

[18]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[19]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[20]  D. Varberg Convex Functions , 1973 .

[21]  J. Ortega Numerical Analysis: A Second Course , 1974 .

[22]  Kim C. Border,et al.  Infinite dimensional analysis , 1994 .

[23]  H. Attouch,et al.  Variational Convergence for Functions and Operators (Applicable Mathematics Series) , 1984 .

[24]  Jonathan M. Borwein,et al.  Convex functions on Euclidean spaces , 2010 .

[25]  Wun-Seng Chou,et al.  A note on circulant transition matrices in Markov chains , 2008 .

[26]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[27]  P. L. Combettes,et al.  Generalized Mann iterates for constructing fixed points in Hilbert spaces , 2002 .