Molecular Cloud Origin for the Oxygen Isotope Heterogeneity in the Solar System

Meteorites and their components have anomalous oxygen isotopic compositions characterized by large variations in 18O/16O and 17O/16O ratios. On the basis of recent observations of star-forming regions and models of accreting protoplanetary disks, we suggest that these variations may originate in a parent molecular cloud by ultraviolet photodissociation processes. Materials with anomalous isotopic compositions were then transported into the solar nebula by icy dust grains during the collapse of the cloud. The icy dust grains drifted toward the Sun in the disk, and their subsequent evaporation resulted in the 17O- and 18O-enrichment of the inner disk gas.

[1]  Hisayoshi Yurimoto,et al.  New extreme 16O-rich reservoir in the early solar system , 2003 .

[2]  T. Kawai,et al.  Near-Infrared and CO (J = 1-0) Observations of Photodissociation Regions in M17 , 2002 .

[3]  S. Federman,et al.  Ultraviolet Detection of Interstellar 12C17O and the CO Isotopomeric Ratios toward X Persei , 2002, astro-ph/0206449.

[4]  R. Clayton,et al.  Self-shielding in the solar nebula , 2002 .

[5]  K. Marti Heavy noble gases in solar system matter , 2002 .

[6]  E. Herbst,et al.  New models of interstellar gas–grain chemistry – III. Solid CO2 , 2001 .

[7]  P. Gerakines,et al.  Interstellar Extinction and Polarization in the Taurus Dark Clouds: The Optical Properties of Dust near the Diffuse/Dense Cloud Interface , 2001 .

[8]  M. Harwit,et al.  Implications of Submillimeter Wave Astronomy Satellite Observations for Interstellar Chemistry and Star Formation , 2000 .

[9]  M. Thiemens,et al.  Mass-independent isotope effects in planetary atmospheres and the early solar system. , 1999, Science.

[10]  L. Nittler,et al.  Meteoritic oxide grain from supernova found , 1998, Nature.

[11]  N. Shashar,et al.  Polarization vision helps detect transparent prey , 1998, Nature.

[12]  J. Wasson,et al.  Extreme oxygen-isotope compositions in magnetite from unequilibrated ordinary chondrites , 1998, Nature.

[13]  Love,et al.  The formation of chondrules: petrologic tests of the shock wave model , 1998, Science.

[14]  J. Greenberg Making a comet nucleus , 1998 .

[15]  L. Pagani,et al.  Chemistry and rotational excitation of O_2 in interstellar clouds. II. The 16O^18O isotopomer , 1997 .

[16]  Y. Viala,et al.  Chemistry and rotational excitation of O_2_ in interstellar clouds. I. Predicted emissivities of lines for the ODIN, SWAS, PRONAOS-SMH and PIROG 8 submillimeter receivers. , 1997 .

[17]  Y. Viala,et al.  Photodissociation and rotational excitation of interstellar CO. , 1996 .

[18]  Elizabeth A. Lada,et al.  Dust Extinction and Molecular Gas in the Dark Cloud IC 5146 , 1994 .

[19]  R. Clayton Oxygen Isotopes in Meteorites , 2003 .

[20]  J. Black,et al.  The photodissociation and chemistry of interstellar CO , 1988 .

[21]  R. Clayton,et al.  Isotopic variations in the rock-forming elements in meteorites , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[22]  David J. Stevenson,et al.  Rapid formation of Jupiter by diffusive redistribution of water vapor in the solar nebula , 1988 .

[23]  P. J. Huggins,et al.  Shielding of CO from dissociating radiation in interstellar clouds , 1985 .

[24]  Y. Kitamura,et al.  Oxygen isotopic anomaly and solar nebular photochemistry , 1983 .

[25]  W. D. Watson,et al.  Further analysis of the possible effects of isotope-selective photodissociation on interstellar carbon monoxide , 1983 .

[26]  M. Thiemens,et al.  The Mass-Independent Fractionation of Oxygen: A Novel Isotope Effect and Its Possible Cosmochemical Implications , 1983, Science.

[27]  J. Bally,et al.  Isotope-selective photodestruction of carbon monoxide , 1982 .