Ablation Programming for Machine Learning

As machine learning systems are being used in an increasing number of applications from analysis of satellite sensory data and health-care analytics to smart virtual assistants and self-driving car ...

[1]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[2]  Milton L. Blum,et al.  Psychology: the science of behavior , 1967 .

[3]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Martin Wattenberg,et al.  The What-If Tool: Interactive Probing of Machine Learning Models , 2019, IEEE Transactions on Visualization and Computer Graphics.

[5]  Arthur L. Samuel,et al.  Some Studies in Machine Learning Using the Game of Checkers , 1967, IBM J. Res. Dev..

[6]  Tom Schaul,et al.  Rainbow: Combining Improvements in Deep Reinforcement Learning , 2017, AAAI.

[7]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[8]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[9]  Zachary C. Lipton,et al.  Troubling Trends in Machine Learning Scholarship , 2018, ACM Queue.

[10]  John McCarthy,et al.  Generality in artificial intelligence , 1987, Resonance.

[11]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[12]  Jim Dowling,et al.  Hopsworks: Improving User Experience and Development on Hadoop with Scalable, Strongly Consistent Metadata , 2017, 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS).

[13]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[14]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[15]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[16]  Joseph K. Bradley,et al.  Spark SQL: Relational Data Processing in Spark , 2015, SIGMOD Conference.

[17]  Scott Lundberg,et al.  A Unified Approach to Interpreting Model Predictions , 2017, NIPS.

[18]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[19]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[20]  Yoshua Bengio,et al.  Deconstructing the Ladder Network Architecture , 2015, ICML.

[21]  Scott Shenker,et al.  Spark: Cluster Computing with Working Sets , 2010, HotCloud.

[22]  Seif Haridi,et al.  HopsFS: Scaling Hierarchical File System Metadata Using NewSQL Databases , 2016, FAST.

[23]  Eric Horvitz,et al.  Learning and reasoning about interruption , 2003, ICMI '03.

[24]  Gaurav Kumar,et al.  MATHEMATICS FOR MACHINE LEARNING , 2020, Journal of Mathematical Sciences & Computational Mathematics.

[25]  C. Robert Superintelligence: Paths, Dangers, Strategies , 2017 .

[26]  Eric Brill,et al.  Beyond PageRank: machine learning for static ranking , 2006, WWW '06.

[27]  Hairong Kuang,et al.  The Hadoop Distributed File System , 2010, 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST).

[28]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[29]  Lars Kotthoff,et al.  Automated Machine Learning: Methods, Systems, Challenges , 2019, The Springer Series on Challenges in Machine Learning.

[30]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[31]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[32]  Yann LeCun,et al.  The mnist database of handwritten digits , 2005 .

[33]  Jim Dowling,et al.  Scaling HDFS to More Than 1 Million Operations Per Second with HopsFS , 2017, 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID).

[34]  Lorenzo Bruzzone,et al.  From Copernicus Big Data to Extreme Earth Analytics , 2019, EDBT.

[35]  Tobias Meisen,et al.  Ablation Studies in Artificial Neural Networks , 2019, ArXiv.

[36]  Aurélien Géron,et al.  Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems , 2017 .

[37]  Peter Van Roy,et al.  Concepts, Techniques, and Models of Computer Programming , 2004 .

[38]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[39]  Michael J. Franklin,et al.  Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing , 2012, NSDI.