Magneto-optic spatial light modulator with submicron-size magnetic pixels for wide-viewing-angle holographic displays.

Spatial light modulators (SLMs) with submicron-size pixels are promising devices for use in wide-viewing-angle glasses-free holographic 3D displays. In accordance with estimations, an SLM with 1 μm pitch pixels can display holographic images over viewing angles of 30 deg. In the present work, we have studied magneto-optic SLMs (MOSLMs) with submicron-size pixels for wide-viewing-angle holographic displays that are driven by thermomagnetic recording. Amorphous TbFe films were used as a magneto-optic material. The MOSLM with an 800 nm diameter pixels array displayed wide-viewing-angle holographic images. These results demonstrated that MOSLMs with submicron-size pixels have promise for glasses-free holographic 3D displays.

[1]  Larry J. Hornbeck,et al.  Digital Light Processing for high-brightness high-resolution applications , 1997, Electronic Imaging.

[2]  J. H. Greiner,et al.  Magneto‐Optic Hologram , 1969 .

[3]  Xiao-Ning Pang,et al.  Viewing-angle enlargement in holographic augmented reality using time division and spatial tiling. , 2013, Optics express.

[4]  Toshitaka Fujii,et al.  A theoretical analysis of magneto-optical Faraday effect of YIG films with random multilayer structures , 1997 .

[5]  Daniel D. Stancil,et al.  Design, fabrication, switching, and optical characteristics of new magneto‐optic spatial light modulator , 1994 .

[6]  H. Haskal,et al.  Polarization and efficiency in magnetic holography , 1970 .

[7]  S. Inokuchi,et al.  Amorphous TbFe films for magnetic printing with laser writing , 1984 .

[8]  Hiroyuki Takagi,et al.  Magneto-optic spatial light modulators driven by an electric field , 2003 .

[9]  Hemantha K. Wickramasinghe,et al.  High‐resolution magnetic imaging of domains in TbFe by force microscopy , 1988 .

[10]  Koki Sato,et al.  Electro-holographic display using 15mega pixels LCD , 1996, Electronic Imaging.

[11]  S. Benton,et al.  Synthetic aperture holography: a novel approach to three-dimensional displays , 1992 .

[12]  M. Inoue,et al.  Growth of epitaxial garnet film by LPE for application to integrated magneto‐optic light switch arrays , 2004 .

[13]  F. Okano,et al.  Time-alternating method based on single-sideband holography with half-zone-plate processing for the enlargement of viewing zones. , 1999, Applied optics.

[14]  Christopher W. Slinger,et al.  100-megapixel computer-generated holographic images from Active Tiling: a dynamic and scalable electro-optic modulator system , 2003, IS&T/SPIE Electronic Imaging.

[15]  David Vettese Microdisplays: Liquid crystal on silicon , 2010 .

[16]  James P. Waters,et al.  HOLOGRAPHIC IMAGE SYNTHESIS UTILIZING THEORETICAL METHODS , 1966 .

[17]  H K Liu,et al.  Real-time computer-generated hologram by means of liquid-crystal television spatial light modulator. , 1986, Optics letters.

[18]  T. Morishita,et al.  Interference enhanced magnetic Kerr rotation in compositionally modulated TbFe/SiO films , 1988 .

[19]  D. Gabor A New Microscopic Principle , 1948, Nature.

[20]  Yasuhiro Takaki,et al.  Modified resolution redistribution system for frameless hologram display module. , 2010, Optics express.

[21]  T. Kozacki,et al.  Wide angle holographic display system with spatiotemporal multiplexing. , 2012, Optics express.

[22]  R. Mezrich CURIE‐POINT WRITING OF MAGNETIC HOLOGRAMS ON MnBi , 1969 .