Nanoscale analysis of structural synaptic plasticity

[1]  S. Palay,et al.  THE FINE STRUCTURE OF NEURONS , 1955, The Journal of biophysical and biochemical cytology.

[2]  Gray Eg Axo-somatic and axo-dendritic synapses of the cerebral cortex: An electron microscope study , 1959 .

[3]  E. Gray,et al.  Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. , 1959, Journal of anatomy.

[4]  E. Fifková,et al.  Swelling of dendritic spines in the fascia dentata after stimulation of the perforant fibers as a mechanism of post-tetanic potentiation , 1975, Experimental Neurology.

[5]  E. Fifková,et al.  Long-lasting morphological changes in dendritic spines of dentate granular cells following stimulation of the entorhinal area , 1977, Journal of neurocytology.

[6]  G Lynch,et al.  Brief bursts of high-frequency stimulation produce two types of structural change in rat hippocampus. , 1980, Journal of neurophysiology.

[7]  R. Burgoyne,et al.  Depolymerization of dendritic microtubules following incubation of cortical slices , 1982, Neuroscience Letters.

[8]  S. Brenner,et al.  Factors that determine connectivity in the nervous system of Caenorhabditis elegans. , 1983, Cold Spring Harbor symposia on quantitative biology.

[9]  W. Greenough,et al.  Transient and enduring morphological correlates of synaptic activity and efficacy change in the rat hippocampal slice , 1984, Brain Research.

[10]  W B Levy,et al.  Changes in the postsynaptic density with long‐term potentiation in the dentate gyrus , 1986, The Journal of comparative neurology.

[11]  P. Landfield,et al.  Redistribution of synaptic vesicles during long-term potentiation in the hippocampus , 1987, Brain Research.

[12]  P. Lipton,et al.  N‐Methyl‐D‐Aspartate Receptor Activation and Ca2+ Account for Poor Pyramidal Cell Structure in Hippocampal Slices , 1990, Journal of neurochemistry.

[13]  W B Levy,et al.  Morphological correlates of long‐term potentiation imply the modification of existing synapses, not synaptogenesis, in the hippocampal dentate gyrus , 1990, Synapse.

[14]  A. Guidotti Neurotoxicity of excitatory amino acids , 1990 .

[15]  F. Morrell,et al.  Structural synaptic correlate of long‐term potentiation: Formation of axospinous synapses with multiple, completely partitioned transmission zones , 1993, Hippocampus.

[16]  K M Harris,et al.  Occurrence and three-dimensional structure of multiple synapses between individual radiatum axons and their target pyramidal cells in hippocampal area CA1 , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  Kristen M. Harris,et al.  How multiple-synapse boutons could preserve input specificity during an interneuronal spread of LTP , 1995, Trends in Neurosciences.

[18]  Martini,et al.  Role of , 1995, Physical review. B, Condensed matter.

[19]  D. Muller,et al.  Induction of long-term potentiation is associated with major ultrastructural changes of activated synapses. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[20]  P. Andersen,et al.  Long-term potentiation is associated with new excitatory spine synapses on rat dentate granule cells. , 1996, Learning & memory.

[21]  E. Schuman,et al.  Neurotrophins and Time: Different Roles for TrkB Signaling in Hippocampal Long-Term Potentiation , 1997, Neuron.

[22]  T. Bliss,et al.  Ultrastructural synaptic correlates of spatial learning in rat hippocampus , 1997, Neuroscience.

[23]  K M Harris,et al.  Three-Dimensional Organization of Smooth Endoplasmic Reticulum in Hippocampal CA1 Dendrites and Dendritic Spines of the Immature and Mature Rat , 1997, The Journal of Neuroscience.

[24]  G. Shepherd,et al.  Three-Dimensional Structure and Composition of CA3→CA1 Axons in Rat Hippocampal Slices: Implications for Presynaptic Connectivity and Compartmentalization , 1998, The Journal of Neuroscience.

[25]  K M Harris,et al.  Stability in Synapse Number and Size at 2 Hr after Long-Term Potentiation in Hippocampal Area CA1 , 1998, The Journal of Neuroscience.

[26]  C. Regan,et al.  Ultrastructural analysis reveals avoidance conditioning to induce a transient increase in hippocampal dentate spine density in the 6hour post-training period of consolidation , 1998, Neuroscience.

[27]  K. Harris,et al.  Slices Have More Synapses than Perfusion-Fixed Hippocampus from both Young and Mature Rats , 1999, The Journal of Neuroscience.

[28]  N. Toni,et al.  LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite , 1999, Nature.

[29]  O. Steward,et al.  Protein synthesis at synaptic sites on dendrites. , 2001, Annual review of neuroscience.

[30]  B. Barres,et al.  Control of synapse number by glia. , 2001, Science.

[31]  D. Wilkin,et al.  Neuron , 2001, Brain Research.

[32]  Rafael Yuste,et al.  Spine motility with synaptic contact , 2001, Nature Neuroscience.

[33]  T. Teyler,et al.  Electrical stimuli patterned after the theta-rhythm induce multiple forms of LTP. , 2001, Journal of neurophysiology.

[34]  T. Schikorski,et al.  Morphological correlates of functionally defined synaptic vesicle populations , 2001, Nature Neuroscience.

[35]  N. Toni,et al.  Remodeling of Synaptic Membranes after Induction of Long-Term Potentiation , 2001, The Journal of Neuroscience.

[36]  Steven A. Siegelbaum,et al.  Visualization of changes in presynaptic function during long-term synaptic plasticity , 2001, Nature Neuroscience.

[37]  J. Fiala,et al.  Polyribosomes Redistribute from Dendritic Shafts into Spines with Enlarged Synapses during LTP in Developing Rat Hippocampal Slices , 2002, Neuron.

[38]  K. Svoboda,et al.  Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex , 2002, Nature.

[39]  J. Fiala,et al.  Dendritic spines do not split during hippocampal LTP or maturation , 2002, Nature Neuroscience.

[40]  J. Fiala,et al.  Endosomal Compartments Serve Multiple Hippocampal Dendritic Spines from a Widespread Rather Than a Local Store of Recycling Membrane , 2002, The Journal of Neuroscience.

[41]  C. Guatimosim,et al.  Synaptic Vesicle Pools at the Frog Neuromuscular Junction , 2003, Neuron.

[42]  D. Muller,et al.  Presynaptic Remodeling Contributes to Activity-Dependent Synaptogenesis , 2003, The Journal of Neuroscience.

[43]  Avi Avital,et al.  Morphological changes in hippocampal dentate gyrus synapses following spatial learning in rats are transient , 2003, The European journal of neuroscience.

[44]  J. Fiala,et al.  Timing of neuronal and glial ultrastructure disruption during brain slice preparation and recovery in vitro , 2003, The Journal of comparative neurology.

[45]  Karel Svoboda,et al.  Induction of Spine Growth and Synapse Formation by Regulation of the Spine Actin Cytoskeleton , 2004, Neuron.

[46]  J. Fiala,et al.  Dendritic spines disappear with chilling but proliferate excessively upon rewarming of mature hippocampus , 2004, Neuroscience.

[47]  B. Barres,et al.  Role for glia in synaptogenesis , 2004, Glia.

[48]  Silvio O Rizzoli,et al.  The Structural Organization of the Readily Releasable Pool of Synaptic Vesicles , 2004, Science.

[49]  A. Matus,et al.  Hypothermia-Associated Loss of Dendritic Spines , 2004, The Journal of Neuroscience.

[50]  T. Bliss,et al.  Remodelling of synaptic morphology but unchanged synaptic density during late phase long-term potentiation(ltp): A serial section electron micrograph study in the dentate gyrus in the anaesthetised rat , 2004, Neuroscience.

[51]  K. Murphy,et al.  Chemically induced long‐term potentiation increases the number of perforated and complex postsynaptic densities but does not alter dendritic spine volume in CA1 of adult mouse hippocampal slices , 2005, The European journal of neuroscience.

[52]  Sreedharan Sajikumar,et al.  Protein synthesis-dependent long-term functional plasticity: methods and techniques , 2005, Current Opinion in Neurobiology.

[53]  Sreedharan Sajikumar,et al.  Protein synthesis-dependent long-term functional plasticity: methods and techniques [Curr. Opin. Neuro. 15 (2005) 607] , 2005, Current Opinion in Neurobiology.

[54]  Karel Svoboda,et al.  Experience-dependent and cell-type-specific spine growth in the neocortex , 2006, Nature.

[55]  Kristen M. Harris,et al.  Plasticity-Induced Growth of Dendritic Spines by Exocytic Trafficking from Recycling Endosomes , 2006, Neuron.

[56]  J. Tao-Cheng Activity-related redistribution of presynaptic proteins at the active zone , 2006, Neuroscience.

[57]  K. Harris,et al.  Dense core vesicles resemble active-zone transport vesicles and are diminished following synaptogenesis in mature hippocampal slices , 2006, Neuroscience.

[58]  E. Réal,et al.  Analysis of synaptic ultrastructure without fixative using high‐pressure freezing and tomography , 2006, The European journal of neuroscience.

[59]  Kevin Staras,et al.  Constitutive sharing of recycling synaptic vesicles between presynaptic boutons , 2006, Nature Neuroscience.

[60]  K. Svoboda,et al.  Spine growth precedes synapse formation in the adult neocortex in vivo , 2006, Nature Neuroscience.

[61]  J. Bourne,et al.  Do thin spines learn to be mushroom spines that remember? , 2007, Current Opinion in Neurobiology.

[62]  Kevan A. C. Martin,et al.  Protracted Synaptogenesis after Activity-Dependent Spinogenesis in Hippocampal Neurons , 2007, The Journal of Neuroscience.

[63]  J. Frey,et al.  The late maintenance of hippocampal LTP: Requirements, phases, ‘synaptic tagging’, ‘late-associativity’ and implications , 2007, Neuropharmacology.

[64]  Kristen M. Harris,et al.  Warmer preparation of hippocampal slices prevents synapse proliferation that might obscure LTP-related structural plasticity , 2007, Neuropharmacology.

[65]  M. Frotscher,et al.  A role for synaptopodin and the spine apparatus in hippocampal synaptic plasticity. , 2007, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft.

[66]  Robert J Richardson,et al.  Slow Presynaptic and Fast Postsynaptic Components of Compound Long-Term Potentiation , 2007, The Journal of Neuroscience.

[67]  J. Bourne,et al.  Polyribosomes are increased in spines of CA1 dendrites 2 h after the induction of LTP in mature rat hippocampal slices , 2007, Hippocampus.

[68]  Sung-Cherl Jung,et al.  Regulation of Dendritic Excitability by Activity-Dependent Trafficking of the A-Type K+ Channel Subunit Kv4.2 in Hippocampal Neurons , 2007, Neuron.

[69]  K. Harris,et al.  Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus , 2007, Glia.

[70]  The Spread of Ras Activity Triggered by Activation of a Single Dendritic Spine , 2008, Science.

[71]  Tobias Bonhoeffer,et al.  LTD Induction Causes Morphological Changes of Presynaptic Boutons and Reduces Their Contacts with Spines , 2008, Neuron.

[72]  J. Sanes,et al.  Ome sweet ome: what can the genome tell us about the connectome? , 2008, Current Opinion in Neurobiology.

[73]  Maryann E Martone,et al.  The combination of chemical fixation procedures with high pressure freezing and freeze substitution preserves highly labile tissue ultrastructure for electron tomography applications. , 2008, Journal of structural biology.

[74]  D. Nicholson,et al.  Axospinous synaptic subtype‐specific differences in structure, size, ionotropic receptor expression, and connectivity in apical dendritic regions of rat hippocampal CA1 pyramidal neurons , 2009, The Journal of comparative neurology.

[75]  Karel Svoboda,et al.  Rapid Functional Maturation of Nascent Dendritic Spines , 2009, Neuron.

[76]  Ann Marie Craig,et al.  Heterosynaptic Molecular Dynamics: Locally Induced Propagating Synaptic Accumulation of CaM Kinase II , 2009, Neuron.

[77]  K. Harris,et al.  Ultrastructural Analysis of Hippocampal Neuropil from the Connectomics Perspective , 2010, Neuron.

[78]  K. Harris,et al.  Three‐dimensional relationships between perisynaptic astroglia and human hippocampal synapses , 2009, Glia.

[79]  Tiago Branco,et al.  A Vesicle Superpool Spans Multiple Presynaptic Terminals in Hippocampal Neurons , 2010, Neuron.

[80]  T. Branco,et al.  Examining size–strength relationships at hippocampal synapses using an ultrastructural measurement of synaptic release probability , 2010, Journal of structural biology.

[81]  Silvio O. Rizzoli,et al.  Synaptic Vesicle Pools: An Update , 2010, Front. Syn. Neurosci..

[82]  Ania K. Majewska,et al.  Microglial Interactions with Synapses Are Modulated by Visual Experience , 2010, PLoS biology.

[83]  Joseph E LeDoux,et al.  Fear and safety learning differentially affect synapse size and dendritic translation in the lateral amygdala , 2010, Proceedings of the National Academy of Sciences.

[84]  Arthur W. Wetzel,et al.  Network anatomy and in vivo physiology of visual cortical neurons , 2011, Nature.

[85]  Moritz Helmstaedter,et al.  High-accuracy neurite reconstruction for high-throughput neuroanatomy , 2011, Nature Neuroscience.

[86]  Kristen M Harris,et al.  Coordination of size and number of excitatory and inhibitory synapses results in a balanced structural plasticity along mature hippocampal CA1 dendrites during LTP , 2011, Hippocampus.

[87]  Joseph E LeDoux,et al.  Stability of presynaptic vesicle pools and changes in synapse morphology in the amygdala following fear learning in adult rats , 2012, The Journal of comparative neurology.