High-power 1.3‐μm InGaAsN strain-compensated lasers fabricated with pulsed anodic oxidation
暂无分享,去创建一个
Yi Qu | Shu Yuan | Chongyang Liu | Y. Qu | Chongyang Liu | S. Yuan
[1] M. Grove,et al. Pulsed anodic oxides for III-V semiconductor device fabrication , 1994 .
[2] L. Mawst,et al. Low-threshold strain-compensated InGaAs(N) (/spl lambda/ = 1.19-1.31 μm) quantum-well lasers , 2002, IEEE Photonics Technology Letters.
[3] S. G. Spruytte,et al. Nitrogen incorporation in group III–nitride–arsenide materials grown by elemental source molecular beam epitaxy , 2001 .
[4] M. Pessa,et al. 1.32-μm GaInNAs-GaAs laser with a low threshold current density , 2002, IEEE Photonics Technology Letters.
[5] Chennupati Jagadish,et al. Anodic-oxide-induced intermixing in GaAs-AlGaAs quantum-well and quantum-wire structures , 1998 .
[6] Nelson Tansu,et al. Improved photoluminescence of InGaAsN-(In)GaAsP quantum well by organometallic vapor phase epitaxy using growth pause annealing , 2003 .
[7] O. Okhotnikov,et al. Strain-compensated GaInNAs structures for 1.3-/spl mu/m lasers , 2002 .
[8] Soo Jin Chua,et al. Temperature-dependent photoluminescence of GaInP/AlGaInP multiple quantum well laser structure grown by metalorganic chemical vapor deposition with tertiarybutylarsine and tertiarybutylphosphine , 2003 .
[9] T. Jouhti,et al. Low-threshold-current 1.32-μm GaInNAs/GaAs single-quantum-well lasers grown by molecular-beam epitaxy , 2001 .
[10] S. Sato,et al. High-temperature characteristic in 1.3-/spl mu/m-range highly strained GaInNAs ridge stripe lasers grown by metal-organic chemical vapor deposition , 1999, IEEE Photonics Technology Letters.
[11] K. Uomi,et al. 1.3-μm continuous-wave lasing operation in GaInNAs quantum-well lasers , 1998, IEEE Photonics Technology Letters.
[12] Nelson Tansu,et al. High-performance and high-temperature continuous-wave-operation 1300 nm InGaAsN quantum well lasers by organometallic vapor phase epitaxy , 2003 .
[13] Chennupati Jagadish,et al. Anodic-oxide-induced interdiffusion in GaAs/AlGaAs quantum wells , 1998 .
[14] Jin Zou,et al. Novel impurity-free interdiffusion in GaAs/AlGaAs quantum wells by anodization and rapid thermal annealing , 1997 .
[15] S. Forrest,et al. High T/sub 0/ long-wavelength InGaAsN quantum-well lasers grown by GSMBE using a solid arsenic source , 2002, IEEE Photonics Technology Letters.
[16] Nelson Tansu,et al. Low-threshold 1317-nm InGaAsN quantum-well lasers with GaAsN barriers , 2003 .
[17] Baoxue Bo,et al. High-power InAlGaAs/GaAs and AlGaAs/GaAs semiconductor laser arrays emitting at 808 nm , 2004 .
[18] A. Kovsh,et al. High-power (200 mW) singlemode operation of InGaAsN∕GaAs ridge waveguide lasers with wavelength around 1.3 [micro sign]m , 2003 .
[19] Wei Li,et al. Effects of rapid thermal annealing on strain-compensated GaInNAs/GaAsP quantum well structures and lasers , 2001 .
[20] Nelson Tansu,et al. Low-threshold-current-density 1300-nm dilute-nitride quantum well lasers , 2002 .
[21] Kouji Nakahara,et al. GaInNAs: a novel material for long-wavelength semiconductor lasers , 1997 .
[22] J.S. Harris,et al. Multiple-quantum-well GaInNAs-GaNAs ridge-waveguide laser diodes operating out to 1.4 /spl mu/m , 2002, IEEE Photonics Technology Letters.