High-power 1.3‐μm InGaAsN strain-compensated lasers fabricated with pulsed anodic oxidation

Ridge waveguide InGaAsN triple-quantum-well strain-compensated lasers grown by metal-organic chemical vapor deposition were fabricated with pulsed anodic oxidation. Laser output power reached 962mW in cw mode at room temperature from 100‐μm stripe lasers with a wavelength of 1297nm. The threshold-current density was 256A∕cm2. The characteristic temperature of the lasers was 138K in the linear region (20–80°C).

[1]  M. Grove,et al.  Pulsed anodic oxides for III-V semiconductor device fabrication , 1994 .

[2]  L. Mawst,et al.  Low-threshold strain-compensated InGaAs(N) (/spl lambda/ = 1.19-1.31 μm) quantum-well lasers , 2002, IEEE Photonics Technology Letters.

[3]  S. G. Spruytte,et al.  Nitrogen incorporation in group III–nitride–arsenide materials grown by elemental source molecular beam epitaxy , 2001 .

[4]  M. Pessa,et al.  1.32-μm GaInNAs-GaAs laser with a low threshold current density , 2002, IEEE Photonics Technology Letters.

[5]  Chennupati Jagadish,et al.  Anodic-oxide-induced intermixing in GaAs-AlGaAs quantum-well and quantum-wire structures , 1998 .

[6]  Nelson Tansu,et al.  Improved photoluminescence of InGaAsN-(In)GaAsP quantum well by organometallic vapor phase epitaxy using growth pause annealing , 2003 .

[7]  O. Okhotnikov,et al.  Strain-compensated GaInNAs structures for 1.3-/spl mu/m lasers , 2002 .

[8]  Soo Jin Chua,et al.  Temperature-dependent photoluminescence of GaInP/AlGaInP multiple quantum well laser structure grown by metalorganic chemical vapor deposition with tertiarybutylarsine and tertiarybutylphosphine , 2003 .

[9]  T. Jouhti,et al.  Low-threshold-current 1.32-μm GaInNAs/GaAs single-quantum-well lasers grown by molecular-beam epitaxy , 2001 .

[10]  S. Sato,et al.  High-temperature characteristic in 1.3-/spl mu/m-range highly strained GaInNAs ridge stripe lasers grown by metal-organic chemical vapor deposition , 1999, IEEE Photonics Technology Letters.

[11]  K. Uomi,et al.  1.3-μm continuous-wave lasing operation in GaInNAs quantum-well lasers , 1998, IEEE Photonics Technology Letters.

[12]  Nelson Tansu,et al.  High-performance and high-temperature continuous-wave-operation 1300 nm InGaAsN quantum well lasers by organometallic vapor phase epitaxy , 2003 .

[13]  Chennupati Jagadish,et al.  Anodic-oxide-induced interdiffusion in GaAs/AlGaAs quantum wells , 1998 .

[14]  Jin Zou,et al.  Novel impurity-free interdiffusion in GaAs/AlGaAs quantum wells by anodization and rapid thermal annealing , 1997 .

[15]  S. Forrest,et al.  High T/sub 0/ long-wavelength InGaAsN quantum-well lasers grown by GSMBE using a solid arsenic source , 2002, IEEE Photonics Technology Letters.

[16]  Nelson Tansu,et al.  Low-threshold 1317-nm InGaAsN quantum-well lasers with GaAsN barriers , 2003 .

[17]  Baoxue Bo,et al.  High-power InAlGaAs/GaAs and AlGaAs/GaAs semiconductor laser arrays emitting at 808 nm , 2004 .

[18]  A. Kovsh,et al.  High-power (200 mW) singlemode operation of InGaAsN∕GaAs ridge waveguide lasers with wavelength around 1.3 [micro sign]m , 2003 .

[19]  Wei Li,et al.  Effects of rapid thermal annealing on strain-compensated GaInNAs/GaAsP quantum well structures and lasers , 2001 .

[20]  Nelson Tansu,et al.  Low-threshold-current-density 1300-nm dilute-nitride quantum well lasers , 2002 .

[21]  Kouji Nakahara,et al.  GaInNAs: a novel material for long-wavelength semiconductor lasers , 1997 .

[22]  J.S. Harris,et al.  Multiple-quantum-well GaInNAs-GaNAs ridge-waveguide laser diodes operating out to 1.4 /spl mu/m , 2002, IEEE Photonics Technology Letters.