Off-line handwritten Chinese character recognition based on crossing line feature

A new method to extract crossing line features for off-line handwritten Chinese character recognition is proposed in this paper. Firstly, the input pattern is nonlinearly normalized in order to compensate for shape variations. Secondly, the normalized pattern is separated into four subpatterns according to the four kinds of elementary strokes. Thirdly, the four subpatterns are uniformly divided into M/spl times/M cells respectively. In every cell, the crossing lines are counted. Then a 4M/sup 2/-dimensional feature vector is generated. An off-line handwritten Chinese character recognition system is built based on this feature. Our experiments have demonstrated the effectiveness of the method proposed in this paper.

[1]  Qi Tian,et al.  Survey: omnifont-printed character recognition , 1991, Other Conferences.

[2]  Sargur N. Srihari,et al.  Computer Text Recognition and Error Correction , 1985 .

[3]  L. R. Rabiner,et al.  An introduction to the application of the theory of probabilistic functions of a Markov process to automatic speech recognition , 1983, The Bell System Technical Journal.

[4]  Seong-Whan Lee,et al.  Nonlinear shape normalization methods for the recognition of large-set handwritten characters , 1994, Pattern Recognit..

[5]  Paul P. Wang,et al.  Machine recognition of printed Chinese characters via transformation algorithms , 1972, CDC 1972.

[6]  J. Mantas,et al.  Methodologies in pattern recognition and image analysis - A brief survey , 1987, Pattern Recognit..

[7]  Jianchang Mao,et al.  Automated forms-processing software and services , 1996, IBM J. Res. Dev..

[8]  H. Derin,et al.  Discrete-index Markov-type random processes , 1989, Proc. IEEE.

[9]  Malayappan Shridhar,et al.  A high-accuracy syntactic recognition algorithm for handwritten numerals , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[10]  Anil K. Jain,et al.  Page segmentation using tecture analysis , 1996, Pattern Recognit..

[11]  Young-Joon Kim,et al.  Multiresolution recognition of handwritten numerals with wavelet transform and multilayer cluster neural network , 1995, Proceedings of 3rd International Conference on Document Analysis and Recognition.

[12]  Fatos T. Yarman-Vural,et al.  Optical Character Recognition Without Segmentation , 1997, ICIAP.

[13]  Mary Deutsch-McLeish,et al.  A study on the use of belief functions for medical expert systems , 1991 .

[14]  Fatos T. Yarman-Vural,et al.  A new scheme for off-line handwritten connected digit recognition , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[15]  Lalit R. Bahl,et al.  Maximum mutual information estimation of hidden Markov model parameters for speech recognition , 1986, ICASSP '86. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[16]  Lalit R. Bahl,et al.  A Maximum Likelihood Approach to Continuous Speech Recognition , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Ching Y. Suen,et al.  Hierarchical attributed graph representation and recognition of handwritten chinese characters , 1991, Pattern Recognit..

[18]  Samir Al-Emami,et al.  On-Line Recognition of Handwritten Arabic Characters , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  S. Ganapathy,et al.  Preprocessing techniques for cursive script word recognition , 1983, Pattern Recognit..

[20]  Azriel Rosenfeld,et al.  A method of detecting the orientation of aligned components , 1986, Pattern Recognit. Lett..

[21]  Mansur R. Kabuka,et al.  A Novel Feature Recognition Neural Network and its Application to Character Recognition , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Paul D. Gader,et al.  Recognition of handwritten digits using template and model matching , 1991, Pattern Recognit..

[23]  Ching Y. Suen,et al.  A generalized knowledge-based system for the recognition of unconstrained handwritten numerals , 1990, IEEE Trans. Syst. Man Cybern..

[24]  Chien-Huei Chen,et al.  Word recognition in a segmentation-free approach to OCR , 1993, Proceedings of 2nd International Conference on Document Analysis and Recognition (ICDAR '93).

[25]  Ching Y. Suen,et al.  Historical review of OCR research and development , 1992, Proc. IEEE.

[26]  L. Rabiner,et al.  An introduction to hidden Markov models , 1986, IEEE ASSP Magazine.

[27]  Ching Y. Suen,et al.  A new system for reading handwritten zip codes , 1995, Proceedings of 3rd International Conference on Document Analysis and Recognition.

[28]  Emanuele Trucco,et al.  Computer and Robot Vision , 1995 .

[29]  Mitsuru Ikeda,et al.  Direct parsing , 1986, Pattern Recognit..

[30]  Ching Y. Suen,et al.  Building a new generation of handwriting recognition systems , 1993, Pattern Recognit. Lett..

[31]  Alex Waibel,et al.  Readings in speech recognition , 1990 .

[32]  Sargur N. Srihari,et al.  Off-Line Cursive Script Word Recognition , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Fatos T. Yarman-Vural,et al.  Noise, histogram and cluster validity for Gaussian-mixtured data , 1987, Pattern Recognit..

[34]  Kunihiko Fukushima,et al.  Recognition and segmentation of connected characters with selective attention , 1993, Neural Networks.

[35]  Whoi-Yul Kim,et al.  A practical pattern recognition system for translation, scale and rotation invariance , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[36]  Biing-Hwang Juang,et al.  The segmental K-means algorithm for estimating parameters of hidden Markov models , 1990, IEEE Trans. Acoust. Speech Signal Process..

[37]  J. Mantas,et al.  An overview of character recognition methodologies , 1986, Pattern Recognit..

[38]  Charles C. Tappert,et al.  Cursive Script Recognition by Elastic Matching , 1982, IBM J. Res. Dev..

[39]  Paul D. Gader,et al.  Handwritten Word Recognition Using Segmentation-Free Hidden Markov Modeling and Segmentation-Based Dynamic Programming Techniques , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Henry S. Baird,et al.  Document image defect models and their uses , 1993, Proceedings of 2nd International Conference on Document Analysis and Recognition (ICDAR '93).

[41]  Gilles F. Houle,et al.  Hybrid Contextural Text Recognition with String Matching , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  K Fukushima,et al.  Handwritten alphanumeric character recognition by the neocognitron , 1991, IEEE Trans. Neural Networks.

[43]  King-Sun Fu,et al.  Attributed Grammar-A Tool for Combining Syntactic and Statistical Approaches to Pattern Recognition , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[44]  Anil K. Jain,et al.  Document Representation and Its Application to Page Decomposition , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Kazuhiko Yamamoto,et al.  Research on Machine Recognition of Handprinted Characters , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Haruo Asada,et al.  Major components of a complete text reading system , 1992 .

[47]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[48]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[49]  I. S. I. Abuhaiba,et al.  A fuzzy graph theoretic approach to recognize the totally unconstrained handwritten numerals , 1993, Pattern Recognit..

[50]  E. R. Davies,et al.  Thinning algorithms: A critique and a new methodology , 1981, Pattern Recognit..

[51]  Fumitaka Kimura,et al.  Handwritten numerical recognition based on multiple algorithms , 1991, Pattern Recognit..

[52]  Réjean Plamondon,et al.  Normalizing and restoring on-line handwriting , 1993, Pattern Recognit..

[53]  Koichi Kise,et al.  Page segmentation based on thinning of background , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[54]  Jian Zhou,et al.  Off-Line Handwritten Word Recognition Using a Hidden Markov Model Type Stochastic Network , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[55]  Jack D. Tubbs,et al.  A note on binary template matching , 1989, Pattern Recognit..

[56]  Lawrence R. Rabiner,et al.  A minimum discrimination information approach for hidden Markov modeling , 1989, IEEE Trans. Inf. Theory.

[57]  Fang-Hsuan Cheng,et al.  Recognition of handprinted chinese characters via stroke relaxation , 1993, Pattern Recognit..

[58]  Fang-Hsuan Cheng,et al.  Fuzzy approach to solve the recognition problem of handwritten chinese characters , 1989, Pattern Recognit..

[59]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[60]  Lawrence O'Gorman,et al.  The Document Spectrum for Page Layout Analysis , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[61]  Jean Paul Haton,et al.  A Syntactic Approach for Handwritten Mathematical Formula Recognition , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62]  Yasuaki Nakano,et al.  Segmentation methods for character recognition: from segmentation to document structure analysis , 1992, Proc. IEEE.

[63]  Kin Hong Wong,et al.  Script recognition using hidden Markov models , 1986, ICASSP '86. IEEE International Conference on Acoustics, Speech, and Signal Processing.

[64]  Réjean Plamondon,et al.  Handwriting processing and recognition , 1993, Pattern Recognit..

[65]  V. A. Kovalevsky,et al.  Character readers and pattern recognition , 1968 .

[66]  Jun Gu,et al.  A Constrained Approach to Multifont Chinese Character Recognition , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[67]  Patrick J. Grother,et al.  The First Census Optical Character Recognition Systems Conference | NIST , 1992 .

[68]  A. J. Elms A connected character recogniser using level building of HMMs , 1994, Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 3 - Conference C: Signal Processing (Cat. No.94CH3440-5).

[69]  Yoshihiko Hamamoto,et al.  Recognition of handprinted Chinese characters using Gabor features , 1995, Proceedings of 3rd International Conference on Document Analysis and Recognition.

[70]  Yoshua Bengio,et al.  Global optimization of a neural network-hidden Markov model hybrid , 1992, IEEE Trans. Neural Networks.

[71]  Fatos T. Yarman-Vural,et al.  One dimensional representation of two dimensional information for HMM based handwritten recognition , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[72]  Seong-Whan Lee,et al.  A new methodology for gray-scale character segmentation and recognition , 1995, Proceedings of 3rd International Conference on Document Analysis and Recognition.

[73]  Adam Krzyżak,et al.  Methods of combining multiple classifiers and their applications to handwriting recognition , 1992, IEEE Trans. Syst. Man Cybern..

[74]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[75]  Keith E. Price,et al.  Relaxation Matching Techniques-A Comparison , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[76]  Lambert Schomaker,et al.  Using stroke- or character-based self-organizing maps in the recognition of on-line, connected cursive script , 1993, Pattern Recognit..

[77]  Paramvir Bahl,et al.  Recognition of handwritten word: first and second order hidden Markov model based approach , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[78]  Minsoo Suk,et al.  On machine recognition of hand-printed Chinese characters by feature relaxation , 1988, Pattern Recognit..

[79]  L. D. Harmon,et al.  Automatic recognition of print and script , 1972 .

[80]  Sharad C. Seth,et al.  A trainable, single-pass algorithm for column segmentation , 1995, Proceedings of 3rd International Conference on Document Analysis and Recognition.

[81]  Jerome M. Kurtzberg,et al.  Feature Analysis for Symbol Recognition by Elastic Matching , 1987, IBM J. Res. Dev..

[82]  Anil K. Jain,et al.  Goal-Directed Evaluation of Binarization Methods , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[83]  Kenneth C Hayes,et al.  Reading handwritten words using hierarchical relaxation , 1980 .

[84]  Graham Leedham,et al.  Preprocessing and presorting of envelope images for automatic sorting using OCR , 1990, Pattern Recognit..

[85]  Miriam Furst,et al.  Recognition of handwritten Hebrew one-stroke letters by learning syntactic representations of symbols , 1989, IEEE Trans. Syst. Man Cybern..

[86]  E. Lecolinet,et al.  Strategies in character segmentation: a survey , 1995, Proceedings of 3rd International Conference on Document Analysis and Recognition.

[87]  R. J. Schalko Digital Image Processing and Computer Vision , 1989 .

[88]  Yang He,et al.  On optimal order in modeling sequence of letters in words of common language as a Markov chain , 1991, Pattern Recognit..

[89]  Josef Kittler,et al.  Pattern recognition : a statistical approach , 1982 .

[90]  Dan Liu,et al.  A new approach to document analysis based on modified fractal signature , 1995, Proceedings of 3rd International Conference on Document Analysis and Recognition.

[91]  Talaat S. El-Sheikh,et al.  Computer recognition of arabic cursive scripts , 1988, Pattern Recognit..

[92]  Ching Y. Suen,et al.  A Method of Combining Multiple Experts for the Recognition of Unconstrained Handwritten Numerals , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[93]  Gyeonghwan Kim,et al.  A Lexicon Driven Approach to Handwritten Word Recognition for Real-Time Applications , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[94]  Theodosios Pavlidis,et al.  Recognition of printed text under realistic conditions , 1993, Pattern Recognit. Lett..

[95]  B. HennisR. The IBM 1975 optical page reader , 1968 .

[96]  Frederick Jelinek,et al.  Interpolated estimation of Markov source parameters from sparse data , 1980 .