Calcium Sulfoaluminate Sodalite (Ca4Al6O12SO4) Crystal Structure Evaluation and Bulk Modulus Determination

The predominant phase of calcium sulfoaluminate cement, Ca4(Al6O12)SO4, was investigated using high-pressure synchrotron X-ray diffraction from ambient pressure to 4.75 GPa. A critical review of the crystal structure of Ca4(Al6O12)SO4 is presented. Rietveld refinements showed the orthorhombic crystal structure to best match the observed peak intensities and positions for pure Ca4(Al6O12)SO4. The compressibility of Ca4(Al6O12)SO4 was studied using cubic, orthorhombic, and tetragonal crystal structures due to the lack of consensus on the actual space group, and all three models provided similar results of 69(6) GPa. With its divalent cage ions, the bulk modulus of Ca4(Al6O12)SO4 is higher than other sodalites with monovalent cage ions, such as Na8(AlSiO4)6Cl2 or Na8(AlSiO4)6(OH)2·H2O. Likewise, comparing this study to previous ones shows the lattice compressibility of aluminate sodalites decreases with increasing size of the caged ions. Ca4(Al6O12)SO4 is more compressible than other cement clinker phases such as tricalcium aluminate and less compressible than hydrated cement phases such as ettringite and hemicarboaluminate.

[1]  P. E. Halstead,et al.  The composition and crystallography of an anhydrous calcium aluminosulphate occurring in expanding cement , 2007 .

[2]  G. Caglioti,et al.  Choice of collimators for a crystal spectrometer for neutron diffraction , 1958 .

[3]  F. Glasser,et al.  High-performance cement matrices based on calcium sulfoaluminate–belite compositions , 2001 .

[4]  N. Fukuda On the Constitution of Sulfo-Aluminous Clinker , 1961 .

[5]  W. Depmeier Aluminate sodalites — A family with strained structures and ferroic phase transitions , 1988 .

[6]  L. Pauling Interatomic Distances and Bond Character in the Oxygen Acids and Related Substances , 1952 .

[7]  Della M. Roy,et al.  Sulfoaluminate-belite cement from low-calcium fly ash and sulfur-rich and other industrial by-products , 1999 .

[8]  Hans-Rudolf Wenk,et al.  Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra , 1997 .

[9]  B. Franke Bestimmung von Calciumoxyd und Calciumhydroxyd neben wasserfreiem und wasserhaltigem Calciumsilikat , 1941 .

[10]  P. Monteiro,et al.  Bulk modulus of basic sodalite, Na8[AlSiO4]6(OH)2·2H2O, a possible zeolitic precursor in coal-fly-ash-based geopolymers , 2011 .

[11]  James M. Glossinger,et al.  A beamline for high-pressure studies at the Advanced Light Source with a superconducting bending magnet as the source. , 2005, Journal of synchrotron radiation.

[12]  David B. Williams,et al.  Transmission Electron Microscopy , 1996 .

[13]  C. Henderson,et al.  Infrared spectra of aluminogermanate- and aluminate-sodalites and a re-examination of the relationship between TO bond length, TOT angle and the position of the main i.r. absorption band for compounds with framework structures , 1979 .

[14]  J. Ideker,et al.  Advances in alternative cementitious binders , 2011 .

[15]  Frank Winnefeld,et al.  The ternary system Portland cement–calcium sulphoaluminate clinker–anhydrite: Hydration mechanism and mortar properties , 2010 .

[16]  H. Saalfeld,et al.  Silicon‐Free Compounds with Sodalite Structure , 1972 .

[17]  M. Kunz,et al.  Effect of pressure on the crystal structure of ettringite , 2008 .

[18]  M. García-Maté,et al.  Rietveld quantitative phase analysis of Yeelimite-containing cements , 2012 .

[19]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[20]  L. Santoro,et al.  Hydraulic behaviour of calcium sulfoaluminate-based cements derived from industrial process wastes , 1993 .

[21]  C. W. Richards,et al.  Effects of the particle sizes of expansive clinker on strength-expansion characteristics of type K expansive cements , 1982 .

[22]  R. Kondo The Synthesis and Crystallography of a Group of New Compounds Belonging to the Hauyne Type Structure , 1965 .

[23]  Maria C.G. Juenger,et al.  Incorporation of coal combustion residuals into calcium sulfoaluminate-belite cement clinkers , 2012 .

[24]  T. Hirai,et al.  State of boron in chemical vapour-deposited SiC-B composite powders , 1990 .

[25]  Peter M. Bell,et al.  Calibration of the ruby pressure gauge to 800 kbar under quasi‐hydrostatic conditions , 1986 .

[26]  F. Glasser,et al.  Hydration of calcium sulphoaluminate cements , 1996 .

[27]  HyungSeok Kim,et al.  Identification of Calcium Sulphoaluminate Formation between Alunite and Limestone , 2009, Sensors.

[28]  K. Toriumi,et al.  Electron-density distribution in crystals of a-K2CrO4 , 1978 .

[29]  W. Depmeier Tetragonal tetrahedra distortions in cubic sodalite frameworks , 1984 .

[30]  A. P. Hammersley,et al.  Two-dimensional detector software: From real detector to idealised image or two-theta scan , 1996 .

[31]  K. Kuo,et al.  High-resolution electron microscopy of the twinning and intergrowth in Ca4Al6SO16 and Ca3SrAl6SO16 , 1991 .

[32]  F. Birch,et al.  Finite strain isotherm and velocities for single‐crystal and polycrystalline NaCl at high pressures and 300°K , 1978 .

[33]  Xiaolu Guo,et al.  Utilization of municipal solid waste incineration fly ash for sulfoaluminate cement clinker production. , 2011, Waste management.

[34]  Raymond Jeanloz,et al.  Finite‐strain equation of state for high‐pressure phases , 1981 .

[35]  T. Vogt,et al.  Neutron and Synchrotron Radiation High Pressure Experiments on Aluminate Sodalite Sr8[Al12O24](CrO4)2 , 1995 .

[36]  P. Monteiro,et al.  Elastic Properties of Tricalcium Aluminate from High‐Pressure Experiments and First‐Principles Calculations , 2012 .

[37]  Yosiko Sato,et al.  Hydrostatic compression of four corundum‐type compounds: α‐Al2O3, V2O3, Cr2O3, and α‐Fe2O3 , 1979 .

[38]  R. Hazen,et al.  Compressibility of sodalite and scapolite , 1988 .

[39]  M. Weller,et al.  Synthesis and structure of sulfide aluminate sodalites , 1992 .

[40]  K. Ikeda,et al.  Structure refinement of calcium sulfoaluminate, C4A3S̄ with emphasis to oxygen deficiency , 1996 .

[41]  Magdalena Balonis,et al.  High pressure study of low compressibility tetracalcium aluminum carbonate hydrates 3CaO·Al2O3·CaCO3·11H2O , 2012 .

[42]  Maneesh Singh,et al.  Preparation of special cements from red mud , 1996 .

[43]  Milena Marroccoli,et al.  The influence of C4A3S̄ content and ratio on the performance of calcium sulfoaluminate-based cements , 1996 .

[44]  A. Whittaker,et al.  Structure of calcium aluminate sulfate Ca4Al6O16S , 1995 .

[45]  W. H. Baur,et al.  Symmetry relationships of sodalite (SOD) – type crystal structures , 2009 .

[46]  W. Depmeier Phase transitions and modulated structures in aluminate sodalites , 1992 .

[47]  S. Sahu,et al.  Preparation of sulphoaluminate belite cement from fly ash , 1994 .

[48]  W. S. Veeman,et al.  sup 27 Al NMR studies of the aluminate sodalites Sr sub 8 (Al sub 12 O sub 24 )(CrO sub 4 ) sub 2 and Ca sub 8 (Al sub 12 O sub 24 )(WO sub 4 ) sub 2 , 1991 .

[49]  Magdalena Balonis,et al.  Pressure induced reactions amongst calcium aluminate hydrate phases , 2011 .

[50]  M. Juenger,et al.  Understanding expansion in calcium sulfoaluminate–belite cements , 2012 .

[51]  H. E. Petch The hydrogen positions in portlandite, Ca(OH)2, as indicated by the electron distribution , 1961 .

[52]  J. Jeffery,et al.  The crystal structure of tricalcium aluminate, Ca3Al2O6 , 1975 .

[53]  A. Ayuela,et al.  Structure, Atomistic Simulations, and Phase Transition of Stoichiometric Yeelimite , 2013 .