Fusion vectors: Embedding Graph Fusions for Efficient Unsupervised Rank Aggregation

The vast increase in amount and complexity of digital content led to a wide interest in ad-hoc retrieval systems in recent years. Complementary, the existence of heterogeneous data sources and retrieval models stimulated the proliferation of increasingly ingenious and effective rank aggregation functions. Although recently proposed rank aggregation functions are promising with respect to effectiveness, existing proposals in the area usually overlook efficiency aspects. We propose an innovative rank aggregation function that is unsupervised, intrinsically multimodal, and targeted for fast retrieval and top effectiveness performance. We introduce the concepts of embedding and indexing of graph-based rank-aggregation representation models, and their application for search tasks. Embedding formulations are also proposed for graph-based rank representations. We introduce the concept of fusion vectors, a late-fusion representation of objects based on ranks, from which an intrinsically rank-aggregation retrieval model is defined. Next, we present an approach for fast retrieval based on fusion vectors, thus promoting an efficient rank aggregation system. Our method presents top effectiveness performance among state-of-the-art related work, while bringing novel aspects of multimodality and effectiveness. Consistent speedups are achieved against the recent baselines in all datasets considered.

[1]  Ricardo da Silva Torres,et al.  Contour salience descriptors for effective image retrieval and analysis , 2007, Image Vis. Comput..

[2]  Ricardo da Silva Torres,et al.  A Soft Computing Approach for Learning to Aggregate Rankings , 2015, CIKM.

[3]  Manpreet Singh,et al.  Comparative analysis of Rank Aggregation techniques for metasearch using genetic algorithm , 2016, Education and Information Technologies.

[4]  Matt J. Kusner,et al.  From Word Embeddings To Document Distances , 2015, ICML.

[5]  Haibin Ling,et al.  Shape Classification Using the Inner-Distance , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Ricardo da Silva Torres,et al.  A correlation graph approach for unsupervised manifold learning in image retrieval tasks , 2016, Neurocomputing.

[7]  Song Bai,et al.  Sparse Contextual Activation for Efficient Visual Re-Ranking , 2016, IEEE Transactions on Image Processing.

[8]  Miro Kraetzl,et al.  Graph distances using graph union , 2001, Pattern Recognit. Lett..

[9]  Ronald Fagin,et al.  Efficient similarity search and classification via rank aggregation , 2003, SIGMOD '03.

[10]  Jun Zhao,et al.  Learning to Represent Knowledge Graphs with Gaussian Embedding , 2015, CIKM.

[11]  Kaspar Riesen,et al.  Improving vector space embedding of graphs through feature selection algorithms , 2011, Pattern Recognit..

[12]  Ricardo da Silva Torres,et al.  Image Re-ranking and Rank Aggregation Based on Similarity of Ranked Lists , 2011, CAIP.

[13]  James Lewis,et al.  Data and text mining Text similarity : an alternative way to search MEDLINE , 2006 .

[14]  Stephan Volmer,et al.  Color co-occurrence descriptors for querying-by-example , 1998, Proceedings 1998 MultiMedia Modeling. MMM'98 (Cat. No.98EX200).

[15]  Trevor Darrell,et al.  Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.

[16]  Djoerd Hiemstra,et al.  A cross-benchmark comparison of 87 learning to rank methods , 2015, Inf. Process. Manag..

[17]  Hermann Ney,et al.  Features for image retrieval: an experimental comparison , 2008, Information Retrieval.

[18]  D. Sculley,et al.  Rank Aggregation for Similar Items , 2007, SDM.

[19]  Jana Reinhard,et al.  Textures A Photographic Album For Artists And Designers , 2016 .

[20]  Javed A. Aslam,et al.  Condorcet fusion for improved retrieval , 2002, CIKM '02.

[21]  Ulrich Eckhardt,et al.  Shape descriptors for non-rigid shapes with a single closed contour , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[22]  S. Shapiro,et al.  Mathematics without Numbers , 1993 .

[23]  Charles L. A. Clarke,et al.  Reciprocal rank fusion outperforms condorcet and individual rank learning methods , 2009, SIGIR.

[24]  Bo Wang,et al.  Unsupervised metric fusion by cross diffusion , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Yiannis S. Boutalis,et al.  FCTH: Fuzzy Color and Texture Histogram - A Low Level Feature for Accurate Image Retrieval , 2008, 2008 Ninth International Workshop on Image Analysis for Multimedia Interactive Services.

[26]  Ricardo da Silva Torres,et al.  Unsupervised Graph-based Rank Aggregation for Improved Retrieval , 2019, Inf. Process. Manag..

[27]  Mathias Lux,et al.  Content based image retrieval with LIRe , 2011, ACM Multimedia.

[28]  Stephen E. Robertson,et al.  Okapi at TREC-3 , 1994, TREC.

[29]  David M. Mount,et al.  It's okay to be skinny, if your friends are fat , 1999 .

[30]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Stephen E. Robertson,et al.  GatfordCentre for Interactive Systems ResearchDepartment of Information , 1996 .

[32]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[33]  Quan Liu,et al.  An Orientation Independent Texture Descriptor for Image Retrieval , 2007, 2007 International Conference on Communications, Circuits and Systems.

[34]  Jurandy Almeida,et al.  Unsupervised Similarity Learning through Rank Correlation and kNN Sets , 2018, ACM Trans. Multim. Comput. Commun. Appl..

[35]  Jeffrey Xu Yu,et al.  Leveraging Graph Dimensions in Online Graph Search , 2014, Proc. VLDB Endow..

[36]  Rama Chellappa,et al.  Articulation-Invariant Representation of Non-planar Shapes , 2010, ECCV.

[37]  David Nistér,et al.  Scalable Recognition with a Vocabulary Tree , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[38]  Shawn Newsam,et al.  A texture descriptor for image retrieval and browsing , 1999, Proceedings IEEE Workshop on Content-Based Access of Image and Video Libraries (CBAIVL'99).

[39]  Ricardo da Silva Torres,et al.  Event Prediction Based on Unsupervised Graph-Based Rank-Fusion Models , 2019, GbRPR.

[40]  Piotr Indyk,et al.  Similarity Search in High Dimensions via Hashing , 1999, VLDB.

[41]  Chris Buckley,et al.  OHSUMED: an interactive retrieval evaluation and new large test collection for research , 1994, SIGIR '94.

[42]  Mario A. Nascimento,et al.  A compact and efficient image retrieval approach based on border/interior pixel classification , 2002, CIKM '02.

[43]  Cordelia Schmid,et al.  Coloring Local Feature Extraction , 2006, ECCV.

[44]  Adam Williams,et al.  Content-based image retrieval using joint correlograms , 2007, Multimedia Tools and Applications.

[45]  Longin Jan Latecki,et al.  Balancing Deformability and Discriminability for Shape Matching , 2010, ECCV.

[46]  Ricardo da Silva Torres,et al.  Shape Retrieval using Contour Features and Distance Optimization , 2010, VISAPP.

[47]  Ming Yang,et al.  Contextual weighting for vocabulary tree based image retrieval , 2011, 2011 International Conference on Computer Vision.

[48]  Jurandy Almeida,et al.  A graph-based ranked-list model for unsupervised distance learning on shape retrieval , 2016, Pattern Recognit. Lett..

[49]  Larry S. Davis,et al.  Re-ranking by Multi-feature Fusion with Diffusion for Image Retrieval , 2015, 2015 IEEE Winter Conference on Applications of Computer Vision.

[50]  Yiannis S. Boutalis,et al.  Automatic Image Annotation and Retrieval Using the Joint Composite Descriptor , 2010, 2010 14th Panhellenic Conference on Informatics.

[51]  Jing Huang,et al.  Image indexing using color correlograms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[52]  Kevin Chen-Chuan Chang,et al.  A Comprehensive Survey of Graph Embedding: Problems, Techniques, and Applications , 2017, IEEE Transactions on Knowledge and Data Engineering.

[53]  José A. Gámez,et al.  Approaching rank aggregation problems by using evolution strategies: The case of the optimal bucket order problem , 2018, Eur. J. Oper. Res..

[54]  João Magalhães,et al.  Low-Complexity Supervised Rank Fusion Models , 2018, CIKM.

[55]  Horst Bunke,et al.  A graph distance metric based on the maximal common subgraph , 1998, Pattern Recognit. Lett..

[56]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[57]  Qi Tian,et al.  Accurate Image Search with Multi-Scale Contextual Evidences , 2016, International Journal of Computer Vision.

[58]  Bo Tao,et al.  Texture Recognition and Image Retrieval Using Gradient Indexing , 2000, J. Vis. Commun. Image Represent..

[59]  Abraham Kandel,et al.  Clustering of Web Documents Using Graph Representations , 2007, Applied Graph Theory in Computer Vision and Pattern Recognition.

[60]  Ricardo da Silva Torres,et al.  Content-Based Image Retrieval: Theory and Applications , 2006, RITA.

[61]  Daniel Carlos Guimarães Pedronette,et al.  Unsupervised manifold learning through reciprocal kNN graph and Connected Components for image retrieval tasks , 2018, Pattern Recognit..

[62]  Ernest Valveny,et al.  Graph embedding in vector spaces by node attribute statistics , 2012, Pattern Recognit..

[63]  Edward A. Fox,et al.  Combination of Multiple Searches , 1993, TREC.

[64]  Moni Naor,et al.  Rank aggregation methods for the Web , 2001, WWW '01.

[65]  B. S. Manjunath,et al.  Color and texture descriptors , 2001, IEEE Trans. Circuits Syst. Video Technol..

[66]  Yiannis S. Boutalis,et al.  CEDD: Color and Edge Directivity Descriptor: A Compact Descriptor for Image Indexing and Retrieval , 2008, ICVS.

[67]  Qi Tian,et al.  Image Classification and Retrieval are ONE , 2015, ICMR.

[68]  Manuel Montes-y-Gómez,et al.  Representing Context Information for Document Retrieval , 2009, FQAS.

[69]  Fatos T. Yarman-Vural,et al.  BAS: a perceptual shape descriptor based on the beam angle statistics , 2003, Pattern Recognit. Lett..

[70]  Siome Goldenstein,et al.  Graph-based bag-of-words for classification , 2018, Pattern Recognit..

[71]  Ming Yang,et al.  Query Specific Rank Fusion for Image Retrieval , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.