Negative Beta Encoder

A new class of analog-to-digital (A/D) and digital-to-analog (D/A) converters using a flaky quantiser, called the $\beta$-encoder, has been shown to have exponential bit rate accuracy while possessing a self-correction property for fluctuations of the amplifier factor $\beta$ and the quantiser threshold $\nu$. The probabilistic behavior of such a flaky quantiser is explained as the deterministic dynamics of the multi-valued R\'enyi map. That is, a sample $x$ is always confined to a contracted subinterval while successive approximations of $x$ are performed using $\beta$-expansion even if $\nu$ may vary at each iteration. This viewpoint enables us to get the decoded sample, which is equal to the midpoint of the subinterval, and its associated characteristic equation for recovering $\beta$ which improves the quantisation error by more than $3{dB}$ when $\beta>1.5$. The invariant subinterval under the R\'enyi map shows that $\nu$ should be set to around the midpoint of its associated greedy and lazy values. %in terms of its quantisation MSE (mean square error). Furthermore, a new A/D converter is introduced called the negative $\beta$-encoder, which further improves the quantisation error of the $\beta$-encoder. A two-state Markov chain describing the $\beta$-encoder suggests that a negative eigenvalue of its associated transition probability matrix reduces the quantisation error.

[1]  J. Gentle Random number generation and Monte Carlo methods , 1998 .

[2]  Tohru Kohda,et al.  Prolate spheroidal wave functions induce Gaussian chip waveforms , 2008, 2008 IEEE International Symposium on Information Theory.

[3]  C. J. Everett Representations for real numbers , 1946 .

[4]  Jan Van der Spiegel,et al.  An Overview of Sigma-Delta Converters: How a 1-bit ADC achieves more than 16-bit resolution , 1996 .

[5]  S. M. Ulam,et al.  On Combination of Stochastic and Deterministic Processes , 1947 .

[6]  Tohru Kohda,et al.  Variances of multiple access interference code average against data average , 2000 .

[7]  Vilmos Komornik,et al.  Characterization of the unique expansions $1=\sum^{\infty}_{i=1}q^{-n_ i}$ and related problems , 1990 .

[8]  Tohru Kohda Information sources using chaotic dynamics , 2001 .

[9]  Ian H. Witten,et al.  Arithmetic coding for data compression , 1987, CACM.

[10]  Tohru Kohda,et al.  CTH12-3: Gaussian Chip Waveform Together with Markovian Spreading Codes Improve BER Performance in Chip-Asynchronous CDMA Systems , 2006, IEEE Globecom 2006.

[11]  K. Dajani,et al.  Ergodic Theory of Numbers: Entropy , 2002 .

[12]  A. Boyarsky,et al.  Laws of Chaos : Invariant Measures and Dynamical Systems in One Dimension , 1997 .

[13]  Mamoru Hoshi,et al.  Interval algorithm for random number generation , 1997, IEEE Trans. Inf. Theory.

[14]  Glen G. Langdon,et al.  An Overview of the Basic Principles of the Q-Coder Adaptive Binary Arithmetic Coder , 1988, IBM J. Res. Dev..

[15]  Ronald A. DeVore,et al.  Beta expansions: a new approach to digitally corrected A/D conversion , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[16]  Lyman P. Hurd,et al.  Fractal image compression , 1993 .

[17]  S. H. Lewis,et al.  A pipelined 5-Msample/s 9-bit analog-to-digital converter , 1987 .

[18]  Jeffrey C. Lagarias,et al.  On the robustness of single-loop sigma-Delta modulation , 2001, IEEE Trans. Inf. Theory.

[19]  J. Lagarias,et al.  The lap-counting function for linear mod one transformations I: explicit formulas and renormalizability , 1996, Ergodic Theory and Dynamical Systems.

[20]  K. Dajani,et al.  From greedy to lazy expansions and their driving dynamics , 2002 .

[21]  Özgür Yilmaz,et al.  Robust and Practical Analog-to-Digital Conversion With Exponential Precision , 2006, IEEE Transactions on Information Theory.

[22]  Hiroshi Inose,et al.  A unity bit coding method by negative feedback , 1963 .

[23]  Sanjeev R. Kulkarni,et al.  Source codes as random number generators , 1997, Proceedings of IEEE International Symposium on Information Theory.

[24]  Markus Jakobsson,et al.  How to turn loaded dice into fair coins , 2000, IEEE Trans. Inf. Theory.

[25]  Ingrid Daubechies,et al.  Single-Bit Oversampled A/D Conversion With Exponential Accuracy in the Bit Rate , 2007, IEEE Transactions on Information Theory.

[26]  A. Rényi Representations for real numbers and their ergodic properties , 1957 .

[27]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[28]  A. Robert Calderbank,et al.  The pros and cons of democracy , 2002, IEEE Trans. Inf. Theory.

[29]  Bernard Derrida,et al.  Iteration of endomorphisms on the real axis and representation of numbers , 1978 .

[30]  Michael C. Mackey,et al.  Chaos, Fractals, and Noise , 1994 .

[31]  I. Daubechies,et al.  Approximating a bandlimited function using very coarsely quantized data: A family of stable sigma-delta modulators of arbitrary order , 2003 .

[32]  C. S. Güntürk One‐bit sigma‐delta quantization with exponential accuracy , 2003 .

[33]  Fumio Kanaya,et al.  A chaos model of finite-order Markov sources and arithmetic coding , 1997, Proceedings of IEEE International Symposium on Information Theory.

[34]  W. D. Melo,et al.  ONE-DIMENSIONAL DYNAMICS , 2013 .

[35]  S. Ulam A collection of mathematical problems , 1960 .

[36]  Leopold Flatto,et al.  Geodesic flows, interval maps, and symbolic dynamics , 1991 .

[37]  Alexander Russell,et al.  Extraction of optimally unbiased bits from a biased source , 2000, IEEE Trans. Inf. Theory.

[38]  James C. Candy,et al.  A Use of Limit Cycle Oscillations to Obtain Robust Analog-to-Digital Converters , 1974, IEEE Trans. Commun..

[39]  Ronald A. DeVore,et al.  A/D conversion with imperfect quantizers , 2006, IEEE Transactions on Information Theory.

[40]  Gianluca Mazzini,et al.  Interference minimisation by auto-correlation shaping in asynchronous DS-CDMA systems: chaos-based spreading is nearly optimal , 1999 .

[41]  Robert M. Gray,et al.  Oversampled Sigma-Delta Modulation , 1987, IEEE Trans. Commun..

[42]  W. Parry On theβ-expansions of real numbers , 1960 .

[43]  Robert M. Gray,et al.  Spectral analysis of quantization noise in a single-loop sigma-delta modulator with DC input , 1989, IEEE Trans. Commun..

[44]  Riccardo Rovatti,et al.  Chaotic complex spreading sequences for asynchronous DS-CDMA. I. System modeling and results , 1997 .