Bayesian Nonparametric Prediction and Statistical Inference

The problem of Bayesian nonparametric prediction and statistical inference is formulated and discussed. A solution is proposed based upon A n and H n as in Hill (1968, 1988). This solution gives rise to the posterior distribution of the number of species (or more generally, the number of distinct values) in a finite population of Hill (1968, 1979), and to the posterior distribution of percentiles of the population of Hill (1968). Next, the meaning of parameters in the subjective Bayesian theory of Bruno de Finetti is discussed in connection both with H n and with conventional parametric models. It is argued that the usual sharp distinction between prediction and parametric inference is largely illusory. The finite version of de Finetti’s theorem is emphasized for the practice of statistics, with the infinite case used only to obtain approximations and insight.

[1]  Correlated Errors in the Random Model , 1967 .

[2]  D. Freedman,et al.  Finite Exchangeable Sequences , 1980 .

[3]  D. Joanes,et al.  Bayesian estimation of the number of species , 1984 .

[4]  L. Mark Berliner,et al.  Bayesian Nonparametric Survival Analysis , 1988 .

[5]  David Heath,et al.  De Finetti's Theorem on Exchangeable Variables , 1976 .

[6]  B. M. Hill,et al.  Posterior Distribution of Percentiles: Bayes' Theorem for Sampling From a Population , 1968 .

[7]  S. Zabell W. E. Johnson's "Sufficientness" Postulate , 1982 .

[8]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[9]  Joseph B. Kadane,et al.  The extent of non-conglomerability of finitely additive probabilities , 1984 .

[10]  Joseph Berkson,et al.  Some Difficulties of Interpretation Encountered in the Application of the Chi-Square Test , 1938 .

[11]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[12]  Rory A. Fisher,et al.  Statistical methods and scientific inference. , 1957 .

[13]  D. Lindley,et al.  Bayes Estimates for the Linear Model , 1972 .

[14]  Wen-chen Chen On the Weak form of Zipf's law , 1980, Journal of Applied Probability.

[15]  Chienming Chang Bayesian nonparametric prediction based on censored data. , 1989 .

[16]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[17]  Michael Woodroofe,et al.  On Zipf's law , 1975, Journal of Applied Probability.

[18]  L. J. Savage The Foundations of Statistical Inference. , 1963 .

[19]  Émile Borel,et al.  Introduction géométrique à quelques théories physiques , 1915, The Mathematical Gazette.

[20]  John Aitchison,et al.  Statistical Prediction Analysis , 1975 .

[21]  Michel Loève,et al.  Probability Theory I , 1977 .

[22]  A. Kan,et al.  A multinomial Bayesian approach to the estimation of population and vocabulary size , 1987 .

[23]  William D. Sudderth,et al.  On Finitely Additive Priors, Coherence, and Extended Admissibility , 1978 .

[24]  William D. Sudderth,et al.  A Strong Law for Some Generalized Urn Processes , 1980 .

[25]  B. M. Hill,et al.  Some subjective bayesian considerations in the selection of models , 1985 .

[26]  B. M. Hill,et al.  Zipf's Law and Prior Distributions for the Composition of a Population , 1970 .

[27]  R D Luce,et al.  Measurement Scales on the Continuum , 1987, Science.

[28]  B. M. Hill,et al.  Exchangeable Urn Processes , 1987 .

[29]  Bruce M. Hill,et al.  Robust Analysis of the Random Model and Weighted Least Squares Regression , 1980 .

[30]  Albert Einstein,et al.  Geometrie Und Erfahrung Erweiterte Fassung des Festvortrages Gehalten an der Preussischen Akademie der Wissenschaften Zu Berlin Am 27. Januar 1921 , 2022 .

[31]  Ian Hacking,et al.  Slightly More Realistic Personal Probability , 1967, Philosophy of Science.

[32]  B. D. Finetti La prévision : ses lois logiques, ses sources subjectives , 1937 .

[33]  G. K. Robinson Conditional Properties of Statistical Procedures , 1979 .

[34]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[35]  B. M. Hill The Validity of the Likelihood Principle , 1987 .

[36]  Michael Woodroofe,et al.  Stronger Forms of Zipf's Law , 1975 .

[37]  Joseph B. Kadane,et al.  Robustness of Bayesian analyses , 1984 .

[38]  Alfréd Rényi,et al.  Foundations of Probability , 1971 .

[39]  R. Wolpert,et al.  Likelihood Principle , 2022, The SAGE Encyclopedia of Research Design.

[40]  W. E. Johnson I.—PROBABILITY: THE DEDUCTIVE AND INDUCTIVE PROBLEMS , 1932 .

[41]  Albert Einstein,et al.  Geometrie und Erfahrung , 1921 .

[42]  Patrick Suppes,et al.  Scientific Inference. Second Edition. , 1958 .

[43]  A. F. M. Smith,et al.  Some Bayesian Thoughts on Modelling and Model Choice , 1986 .

[44]  B. M. Hill Discussion: An Ancillarity Paradox which Appears in Multiple Linear Regression , 1990 .

[45]  J. Kingman Random Discrete Distributions , 1975 .

[46]  F. Hoppe,et al.  The sampling theory of neutral alleles and an urn model in population genetics , 1987, Journal of mathematical biology.

[47]  W. Sudderth,et al.  A sequence of coin toss variables for which the strong law fails , 1988 .

[48]  H. Bandemer Savage, L. J.: Foundations of Statistics. Dover Publ., Inc,. New York 1972. 310 S. , 1974 .

[49]  B. M. Hill,et al.  Foundations for the Theory of Least Squares , 1969 .

[50]  H A Simon,et al.  Some distributions associated with bose-einstein statistics. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[51]  David Lindley,et al.  Bayesian Statistics, a Review , 1987 .

[52]  Bruce M. Hill,et al.  Posterior Moments of the Number of Species in a Finite Population and the Posterior Probability of Finding a New Species , 1979 .

[53]  W. Sudderth,et al.  Diffuse Models for Sampling and Predictive Inference , 1978 .

[54]  B. M. Hill,et al.  Theory of Probability , 1990 .

[55]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[56]  Bruce M. Hill,et al.  The Rank-Frequency Form of Zipf's Law , 1974 .

[57]  D. Blackwell,et al.  Ferguson Distributions Via Polya Urn Schemes , 1973 .

[58]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[59]  A. Dempster On Direct Probabilities , 1963 .

[60]  B. M. Hill,et al.  Inference about Variance Components in the One-Way Model , 1965 .

[61]  D. J. White,et al.  Decision Theory , 2018, Behavioral Finance for Private Banking.

[62]  B. Hill Aberrant Behavior of the Likelihood Function in Discrete Cases , 1975 .

[63]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .