Bayesian Nonparametric Prediction and Statistical Inference
暂无分享,去创建一个
[1] Correlated Errors in the Random Model , 1967 .
[2] D. Freedman,et al. Finite Exchangeable Sequences , 1980 .
[3] D. Joanes,et al. Bayesian estimation of the number of species , 1984 .
[4] L. Mark Berliner,et al. Bayesian Nonparametric Survival Analysis , 1988 .
[5] David Heath,et al. De Finetti's Theorem on Exchangeable Variables , 1976 .
[6] B. M. Hill,et al. Posterior Distribution of Percentiles: Bayes' Theorem for Sampling From a Population , 1968 .
[7] S. Zabell. W. E. Johnson's "Sufficientness" Postulate , 1982 .
[8] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1967 .
[9] Joseph B. Kadane,et al. The extent of non-conglomerability of finitely additive probabilities , 1984 .
[10] Joseph Berkson,et al. Some Difficulties of Interpretation Encountered in the Application of the Chi-Square Test , 1938 .
[11] L. J. Savage,et al. The Foundations of Statistics , 1955 .
[12] Rory A. Fisher,et al. Statistical methods and scientific inference. , 1957 .
[13] D. Lindley,et al. Bayes Estimates for the Linear Model , 1972 .
[14] Wen-chen Chen. On the Weak form of Zipf's law , 1980, Journal of Applied Probability.
[15] Chienming Chang. Bayesian nonparametric prediction based on censored data. , 1989 .
[16] B. M. Hill,et al. A Simple General Approach to Inference About the Tail of a Distribution , 1975 .
[17] Michael Woodroofe,et al. On Zipf's law , 1975, Journal of Applied Probability.
[18] L. J. Savage. The Foundations of Statistical Inference. , 1963 .
[19] Émile Borel,et al. Introduction géométrique à quelques théories physiques , 1915, The Mathematical Gazette.
[20] John Aitchison,et al. Statistical Prediction Analysis , 1975 .
[21] Michel Loève,et al. Probability Theory I , 1977 .
[22] A. Kan,et al. A multinomial Bayesian approach to the estimation of population and vocabulary size , 1987 .
[23] William D. Sudderth,et al. On Finitely Additive Priors, Coherence, and Extended Admissibility , 1978 .
[24] William D. Sudderth,et al. A Strong Law for Some Generalized Urn Processes , 1980 .
[25] B. M. Hill,et al. Some subjective bayesian considerations in the selection of models , 1985 .
[26] B. M. Hill,et al. Zipf's Law and Prior Distributions for the Composition of a Population , 1970 .
[27] R D Luce,et al. Measurement Scales on the Continuum , 1987, Science.
[28] B. M. Hill,et al. Exchangeable Urn Processes , 1987 .
[29] Bruce M. Hill,et al. Robust Analysis of the Random Model and Weighted Least Squares Regression , 1980 .
[30] Albert Einstein,et al. Geometrie Und Erfahrung Erweiterte Fassung des Festvortrages Gehalten an der Preussischen Akademie der Wissenschaften Zu Berlin Am 27. Januar 1921 , 2022 .
[31] Ian Hacking,et al. Slightly More Realistic Personal Probability , 1967, Philosophy of Science.
[32] B. D. Finetti. La prévision : ses lois logiques, ses sources subjectives , 1937 .
[33] G. K. Robinson. Conditional Properties of Statistical Procedures , 1979 .
[34] G. C. Tiao,et al. Bayesian inference in statistical analysis , 1973 .
[35] B. M. Hill. The Validity of the Likelihood Principle , 1987 .
[36] Michael Woodroofe,et al. Stronger Forms of Zipf's Law , 1975 .
[37] Joseph B. Kadane,et al. Robustness of Bayesian analyses , 1984 .
[38] Alfréd Rényi,et al. Foundations of Probability , 1971 .
[39] R. Wolpert,et al. Likelihood Principle , 2022, The SAGE Encyclopedia of Research Design.
[40] W. E. Johnson. I.—PROBABILITY: THE DEDUCTIVE AND INDUCTIVE PROBLEMS , 1932 .
[41] Albert Einstein,et al. Geometrie und Erfahrung , 1921 .
[42] Patrick Suppes,et al. Scientific Inference. Second Edition. , 1958 .
[43] A. F. M. Smith,et al. Some Bayesian Thoughts on Modelling and Model Choice , 1986 .
[44] B. M. Hill. Discussion: An Ancillarity Paradox which Appears in Multiple Linear Regression , 1990 .
[45] J. Kingman. Random Discrete Distributions , 1975 .
[46] F. Hoppe,et al. The sampling theory of neutral alleles and an urn model in population genetics , 1987, Journal of mathematical biology.
[47] W. Sudderth,et al. A sequence of coin toss variables for which the strong law fails , 1988 .
[48] H. Bandemer. Savage, L. J.: Foundations of Statistics. Dover Publ., Inc,. New York 1972. 310 S. , 1974 .
[49] B. M. Hill,et al. Foundations for the Theory of Least Squares , 1969 .
[50] H A Simon,et al. Some distributions associated with bose-einstein statistics. , 1975, Proceedings of the National Academy of Sciences of the United States of America.
[51] David Lindley,et al. Bayesian Statistics, a Review , 1987 .
[52] Bruce M. Hill,et al. Posterior Moments of the Number of Species in a Finite Population and the Posterior Probability of Finding a New Species , 1979 .
[53] W. Sudderth,et al. Diffuse Models for Sampling and Predictive Inference , 1978 .
[54] B. M. Hill,et al. Theory of Probability , 1990 .
[55] T. Ferguson. A Bayesian Analysis of Some Nonparametric Problems , 1973 .
[56] Bruce M. Hill,et al. The Rank-Frequency Form of Zipf's Law , 1974 .
[57] D. Blackwell,et al. Ferguson Distributions Via Polya Urn Schemes , 1973 .
[58] Benoit B. Mandelbrot,et al. Fractal Geometry of Nature , 1984 .
[59] A. Dempster. On Direct Probabilities , 1963 .
[60] B. M. Hill,et al. Inference about Variance Components in the One-Way Model , 1965 .
[61] D. J. White,et al. Decision Theory , 2018, Behavioral Finance for Private Banking.
[62] B. Hill. Aberrant Behavior of the Likelihood Function in Discrete Cases , 1975 .
[63] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1951 .