Dormancy breaking and biochemical processes associated with germination of Erythrina falcata Benth. seeds
暂无分享,去创建一个
J. Lira | A. José | A. A. Alvarenga | M. Artur | J. Faria | K. R. D. Souza | F. Nery
[1] Zhoufei Wang,et al. Advances in the Understanding of Reactive Oxygen Species-Dependent Regulation on Seed Dormancy, Germination, and Deterioration in Crops , 2022, Frontiers in Plant Science.
[2] A. José,et al. Imbibition curve in forest tree seeds and the triphasic pattern: theory versus practice , 2022, South African Journal of Botany.
[3] Chibuike C. Udenigwe,et al. Germination as a bioprocess for enhancing the quality and nutritional prospects of legume proteins , 2020 .
[4] C. Bailly. The signalling role of ROS in the regulation of seed germination and dormancy. , 2019, The Biochemical journal.
[5] A. Henriques,et al. The genus Erythrina L.: A review on its alkaloids, preclinical, and clinical studies , 2019, Phytotherapy research : PTR.
[6] Q. Garcia,et al. Abscisic acid and the antioxidant system are involved in germination of Butia capitata seeds , 2019, Acta Botanica Brasilica.
[7] G. Leubner-Metzger,et al. The biomechanics of seed germination. , 2016, Journal of experimental botany.
[8] M. Duarte,et al. ANATOMICAL CHARACTERS OF THE LEAF AND STEM OF Erythrina falcata BENTH. (FABACEAE) , 2015 .
[9] A. José,et al. Physical dormancy in Senna multijuga (Fabaceae: Caesalpinioideae) seeds: the role of seed structures in water uptake , 2014, Seed Science Research.
[10] L. G. Fernandez,et al. Aspectos morfoanatômicos e fisiológicos de sementes e plântulas de Amburana cearensis (Fr. All.) A.C. Smith (Leguminosae - Papilionoideae) , 2013 .
[11] K. Wilson,et al. Mobilization of seed protein reserves. , 2012, Physiologia plantarum.
[12] Mohammad Pessarakli,et al. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions , 2012 .
[13] Jun-Cheol Moon,et al. Reactive oxygen species in plants: their generation, signal transduction, and scavenging mechanisms , 2011 .
[14] N. Tuteja,et al. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. , 2010, Plant physiology and biochemistry : PPB.
[15] George W. Bassel,et al. Germination—Still a mystery , 2010 .
[16] R. M. Guimarães,et al. SUPERAÇÃO DA DORMÊNCIA EM SEMENTES DE DUAS ESPÉCIES DE Erythrina , 2010 .
[17] E. Almeida. Caracterização farmacognóstica da espécie Erythrina falcata Benth., Fabaceae , 2010 .
[18] C. Baskin,et al. Role of the lens in controlling water uptake in seeds of two Fabaceae (Papilionoideae) species treated with sulphuric acid and hot water , 2009, Seed Science Research.
[19] Ł. Wojtyla,et al. Ascorbate and glutathione metabolism in embryo axes and cotyledons of germinating lupine seeds , 2008, Biologia Plantarum.
[20] S. Jurga,et al. A comparative study of water distribution, free radical production and activation of antioxidative metabolism in germinating pea seeds. , 2006, Journal of plant physiology.
[21] V. B. Corte,et al. Mobilização de reservas durante a germinação das sementes e crescimento das plântulas de Caesalpinia peltophoroides Benth. (Leguminosae-Caesalpinoideae) , 2006 .
[22] G. Güleryüz,et al. Protein Mobilization and Proteolytic Enzyme Activities during Seed Germination of Broad Bean (Vicia faba L.) , 2006, Zeitschrift fur Naturforschung. C, Journal of biosciences.
[23] Douglas A. Johnson,et al. Seed coats: Structure, development, composition, and biotechnology , 2005, In Vitro Cellular & Developmental Biology - Plant.
[24] C. Bailly. Active oxygen species and antioxidants in seed biology , 2004, Seed Science Research.
[25] R. Mittler. Oxidative stress, antioxidants and stress tolerance. , 2002, Trends in plant science.
[26] V. Velikova,et al. Oxidative stress and some antioxidant systems in acid rain-treated bean plants Protective role of exogenous polyamines , 2000 .
[27] E. Havir,et al. Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. , 1987, Plant physiology.
[28] K. Asada,et al. Hydrogen Peroxide is Scavenged by Ascorbate-specific Peroxidase in Spinach Chloroplasts , 1981 .
[29] C. N. Giannopolitis,et al. Superoxide dismutases: I. Occurrence in higher plants. , 1977, Plant physiology.
[30] M. M. Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.
[31] James D. Maguire,et al. Speed of Germination—Aid In Selection And Evaluation for Seedling Emergence And Vigor1 , 1962 .
[32] G. I. Gadotti,et al. GERMINATIVE PERFORMANCE OF MULUNGÚ SEEDS (Ormosia grossa Rudd) AFTER DORMANCY OVERCOMING , 2021, Revista Árvore.
[33] E. Borges,et al. Antioxidant enzyme activity in germination of Dalbergia spruceana seeds under different temperatures , 2021, Journal of Seed Science.
[34] A. A. Carpanezzi,et al. Quebra de Dormência de Sementes de Erythrina crista-galli , 2006 .
[35] E. Silva,et al. Classificação de sementes florestais quanto ao comportamento no armazenamento , 2006 .
[36] C. Baskin,et al. Seed dormancy in trees of climax tropical vegetation types , 2005 .
[37] S. Aust,et al. Microsomal lipid peroxidation. , 1978, Methods in enzymology.