Kolmogorov and population dynamics

[1]  Yang Kuang,et al.  Global stability of Gause-type predator-prey systems , 1990 .

[2]  R. Macarthur,et al.  Graphical Representation and Stability Conditions of Predator-Prey Interactions , 1963, The American Naturalist.

[3]  Yang Kuang,et al.  Uniqueness of limit cycles in Gause-type models of predator-prey systems , 1988 .

[4]  H. I. Freedman A perturbed Kolmogorov-type model for the growth problem , 1975 .

[5]  Alan Hastings,et al.  Chaos in three species food chains , 1994 .

[6]  Dmitriĭ Olegovich Logofet,et al.  Stability of Biological Communities , 1983 .

[7]  A. Hastings,et al.  Chaos in a Three-Species Food Chain , 1991 .

[8]  Uniqueness of limit cycle in the predator-prey system with symmetric prey isocline. , 2000, Mathematical biosciences.

[9]  M. Bulmer,et al.  The theory of prey-predator oscillations. , 1976, Theoretical population biology.

[10]  M E Gilpin,et al.  Enriched predator-prey systems: theoretical stability. , 1972, Science.

[11]  G. F. Gause,et al.  Further Studies of Interaction between Predators and Prey , 1936 .

[12]  Kuo-Shung Cheng,et al.  UNIQUENESS OF A LIMIT CYCLE FOR A PREDATOR-PREY SYSTEM* , 1981 .

[13]  R. May,et al.  Stability and Complexity in Model Ecosystems , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[14]  M. Levandowsky,et al.  Modeling Nature: Episodes in the History of Population Ecology , 1985 .

[15]  S. Schreiber,et al.  Kolmogorov Vector Fields with Robustly Permanent Subsystems , 2002 .

[16]  Josef Hofbauer,et al.  Evolutionary Games and Population Dynamics , 1998 .

[17]  To persist or not to persist , 2004 .

[18]  G S Omenn,et al.  Immunology and genetics. , 1972, Science.

[19]  Robert M. May,et al.  Limit Cycles in Predator-Prey Communities , 1972, Science.

[20]  A. Andronov,et al.  Qualitative Theory of Second-order Dynamic Systems , 1973 .

[21]  F. Albrecht,et al.  The dynamics of two interacting populations , 1974 .

[22]  J. Hofbauer,et al.  Stable periodic solutions for the hypercycle system , 1991 .

[23]  H. I. Freedman Deterministic mathematical models in population ecology , 1982 .

[24]  Sze-Bi Hsu,et al.  Global Stability for a Class of Predator-Prey Systems , 1995, SIAM J. Appl. Math..

[25]  A. Rescigno,et al.  The struggle for life. I. Two species. , 1967, The Bulletin of mathematical biophysics.

[26]  Joan Torregrosa,et al.  Limit cycles in the Holling-Tanner model , 1997 .

[27]  Mary Lou Zeeman,et al.  Hopf bifurcations in competitive three-dimensional Lotka-Volterra Systems , 1993 .

[28]  S Rinaldi,et al.  Remarks on food chain dynamics. , 1996, Mathematical biosciences.

[29]  Hal L. Smith,et al.  Monotone Dynamical Systems: An Introduction To The Theory Of Competitive And Cooperative Systems (Mathematical Surveys And Monographs) By Hal L. Smith , 1995 .

[30]  G. F. Gause The struggle for existence , 1971 .

[31]  Kevin S. McCann,et al.  Biological Conditions for Chaos in a Three‐Species Food Chain , 1994 .

[32]  C. S. Holling,et al.  The functional response of predators to prey density and its role in mimicry and population regulation. , 1965 .

[33]  R M May,et al.  Stable Limit Cycles in Prey-Predator Populations , 1973, Science.

[34]  S. Rinaldi,et al.  A dynamical system with Hopf bifurcations and catastrophes , 1989 .

[35]  M. Hirsch Systems of differential equations that are competitive or cooperative. VI: A local Cr Closing Lemma for 3-dimensional systems , 1985, Ergodic Theory and Dynamical Systems.