Neural Network and Fuzzy Logic Diagnostics of 1x Faults in Rotating Machinery

In this paper, the application of Neural Networks and Fuzzy Logic to the diagnosis of Faults in Rotating Machinery is investigated. The Learning-Vector-Quantization (LVQ) Neural Network is applied in series and in parallel to a Fuzzy inference engine, to diagnose 1x faults. The faults investigated are unbalance, misalignment, and structural looseness. The method is applied to a test rig [1], and the effectiveness of the integrated Neural Network and Fuzzy Logic method is illustrated.Copyright © 2005 by ASME