구매속성 코드와 사용자 프로파일을 이용한 에이전트 기반 비교쇼핑 시스템의 개인화 방안

인터넷 쇼핑몰의 급증으로 각 쇼핑몰은 경쟁적으로 표적판매의 전략으로써 상품 광고나 쇼핑 정보 등을 회원들에게 e-mail로 제공해 주고 있지만 여러 쇼핑몰에 회원으로 가입되어 있는 인터넷 사용자들에게 이런 무분별하고 획일적인 광고는 오히려 번거로운 것일 수 있으며 더욱이 그 내용이 관심 밖의 것일 경우 무가치한 정보 공해에 지나지 않게 된다. 본 논문에서는 등록된 사용자의 프로파일 정보와 학습된 쇼핑패턴을 토대로 그 사용자의 관심도와 쇼핑이 필요한 시기를 예측하여 e-mail로 개인화된 광고 및 추천 서비스를 제공하는 비교쇼핑 시스템을 제안한다. 이를 위해 상품별 구매속성이 반영된 코드를 상품의 ID로 정하여 구매속성별 분류와 검색 및 갱신이 쉽고 정확하게 이루어지도록 하였고 별도의 학습 과정 없이 코드의 검색만으로 선별된 상품을 자동으로 광고와 추천하는 것이 가능하다.