Cellular Estimation Gaussian Algorithm for Continuous Domain

[1]  Aylin Rodríguez Pérez,et al.  Selección de Base de Datos No SQL para almacenamiento de Históricos en Sistemas de Supervisión , 2016 .

[2]  K. Mishra Data-driven analysis of variables and dependencies in continuous optimization problems and estimation of distribution algorithms , 2015 .

[3]  M. Friedman A Comparison of Alternative Tests of Significance for the Problem of $m$ Rankings , 1940 .

[4]  Yongwei Zhou,et al.  Research on multi objective optimization model of sustainable agriculture industrial structure based on genetic algorithm , 2018, J. Intell. Fuzzy Syst..

[5]  Hitoshi Iba,et al.  Reinforcement Learning Estimation of Distribution Algorithm , 2003, GECCO.

[6]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[7]  Hitoshi Iba,et al.  Real-Coded Estimation of Distribution Algorithm , 2003 .

[8]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[9]  Nikolaus Hansen,et al.  Evaluating the CMA Evolution Strategy on Multimodal Test Functions , 2004, PPSN.

[10]  Pedro Larrañaga,et al.  Combinatonal Optimization by Learning and Simulation of Bayesian Networks , 2000, UAI.

[11]  S. García,et al.  An Extension on "Statistical Comparisons of Classifiers over Multiple Data Sets" for all Pairwise Comparisons , 2008 .

[12]  Pedro Larrañaga,et al.  Optimization in Continuous Domains by Learning and Simulation of Gaussian Networks , 2000 .

[13]  M.N.S. Swamy,et al.  Estimation of Distribution Algorithms , 2016 .

[14]  Concha Bielza,et al.  Regularized continuous estimation of distribution algorithms , 2013, Appl. Soft Comput..

[16]  Enrique Alba,et al.  A self-adaptive cellular memetic algorithm for the DNA fragment assembly problem , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[17]  Pedro Larrañaga,et al.  Evolutionary Bayesian Classifier-Based Optimization in Continuous Domains , 2006, SEAL.

[18]  Yingwu Chen,et al.  A knowledge-based technique for initializing a genetic algorithm , 2016, J. Intell. Fuzzy Syst..

[19]  Enrique Alba,et al.  Theory and Practice of Cellular UMDA for Discrete Optimization , 2006, PPSN.

[20]  R. Iman,et al.  Approximations of the critical region of the fbietkan statistic , 1980 .

[21]  Michèle Sebag,et al.  Extending Population-Based Incremental Learning to Continuous Search Spaces , 1998, PPSN.

[22]  Franz Rothlauf,et al.  PolyEDA: Combining Estimation of Distribution Algorithms and Linear Inequality Constraints , 2004, GECCO.

[23]  Francisco Herrera,et al.  Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power , 2010, Inf. Sci..

[24]  Pedro Larrañaga,et al.  Estimation of Distribution Algorithms , 2002, Genetic Algorithms and Evolutionary Computation.

[25]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[26]  Alfred O. Hero,et al.  Shrinkage Algorithms for MMSE Covariance Estimation , 2009, IEEE Transactions on Signal Processing.

[27]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[28]  Alberto Ochoa,et al.  Opportunities for Expensive Optimization with Estimation of Distribution Algorithms , 2010 .