Multi-stage generation of extreme ultraviolet dispersive waves by tapering gas-filled hollow-core anti-resonant fibers

In this work, we numerically investigate an experimentally feasible design of a tapered Ne-filled hollow-core anti-resonant fiber and we report multi-stage generation of dispersive waves (DWs) in the range 90-120 nm, well into the extreme ultraviolet (UV) region. The simulations assume a 800 nm pump pulse with 30 fs 10 μJ pulse energy, launched into a 9 bar Ne-filled fiber with a 34 μm initial core diameter that is then tapered to a 10 μm core diameter. The simulations were performed using a new model that provides a realistic description of both loss and dispersion of the resonant and anti-resonant spectral bands of the fiber, and also importantly includes the material loss of silica in the UV. We show that by first generating solitons that emit DWs in the far-UV region in the pre-taper section, optimization of the following taper structure can allow re-collision with the solitons and further up-conversion of the far-UV DWs to the extreme-UV with energies up to 190 nJ in the 90-120 nm range. This process provides a new way to generate light in the extreme-UV spectral range using relatively low gas pressure. © 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement OCIS codes: (060.5295) Photonic crystal fibers; (060.5530) Pulse propagation and temporal solitons; (190.7110) Ultrafast nonlinear optics; (190.7220) Upconversion. References and links 1. T. Kobayashi and Y. Kida, “Ultrafast spectroscopy with sub-10 fs deep-ultraviolet pulses,” Phys. Chem. Chem. Phys. 14, 6200–6210 (2012). 2. N. Tamai and H. Miyasaka, “Ultrafast dynamics of photochromic systems,” Chem. Rev. 100, 1875–1890 (2000). 3. F. Reinert and S. Hüfner, “Photoemission spectroscopy from early days to recent applications,” New J. Phys. 7, 97 (2005). 4. S. Hanna, P. Campuzano-Jost, E. Simpson, D. Robb, I. Burak, M. Blades, J. Hepburn, and A. Bertram, “A new broadly tunable (7.4-10.2ev) laser based VUV light source and its first application to aerosol mass spectrometry,” Int. J. Mass Spectrom. 279, 134 – 146 (2009). 5. M. C. Asplund, P. T. Snee, J. S. Yeston, M. J. Wilkens, C. K. Payne, H. Yang, K. T. Kotz, H. Frei, R. G. Bergman, and C. B. Harris, “Ultrafast UV pump/IR probe studies of C-H activation in linear, cyclic, and aryl hydrocarbons,” J. Am. Chem. Soc. 124, 10605–10612 (2002). 6. F. Yu and J. C. Knight, “Negative curvature hollow-core optical fiber,” IEEE J. Sel. Top. Quantum Electron. 22, 146–155 (2016). 7. C. Wei, R. J. Weiblen, C. R. Menyuk, and J. Hu, “Negative curvature fibers,” Adv. Opt. Photon. 9, 504–561 (2017). 8. C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89, 045003 (2017). 9. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19, 1441–1448 (2011). 10. A. N. Kolyadin, A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. G. Plotnichenko, and E. M. Dianov, “Light transmission in negative curvature hollow core fiber in extremely high material loss region,” Opt. Express 21, 9514–9519 (2013). 11. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3–4 μm spectral region,” Opt. Express 20, 11153–11158 (2012). Vol. 26, No. 19 | 17 Sep 2018 | OPTICS EXPRESS 24357 #337859 https://doi.org/10.1364/OE.26.024357 Journal © 2018 Received 4 Jul 2018; revised 20 Aug 2018; accepted 22 Aug 2018; published 4 Sep 2018 12. M. S. Habib, O. Bang, and M. Bache, “Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes,” Opt. Express 23, 17394–17406 (2015). 13. W. Belardi and J. C. Knight, “Hollow antiresonant fibers with reduced attenuation,” Opt. Lett. 39, 1853–1856 (2014). 14. W. Belardi and J. C. Knight, “Hollow antiresonant fibers with low bending loss,” Opt. Express 22, 10091–10096 (2014). 15. F. Poletti, “Nested antiresonant nodeless hollow core fiber,” Opt. Express 22, 23807–23828 (2014). 16. M. S. Habib, O. Bang, and M. Bache, “Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements,” Opt. Express 24, 8429–8436 (2016). 17. M. S. Habib, O. Bang, and M. Bache, “Low-loss hollow-core anti-resonant fibers with semi-circular nested tubes,” IEEE J. Sel. Top. Quantum Electron. 22, 156–161 (2016). 18. B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica. 4, 209–217 (2017). 19. F. Yu, M. Xu, and J. C. Knight, “Experimental study of low-loss single-mode performance in anti-resonant hollow-core fibers,” Opt. Express 24, 12969–12975 (2016). 20. R. M. Carter, F. Yu, W. J. Wadsworth, J. D. Shephard, T. Birks, J. C. Knight, and D. P. Hand, “Measurement of resonant bend loss in anti-resonant hollow core optical fiber,” Opt. Express 25, 20612–20621 (2017). 21. P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, and P. S. Russell, “Broadband robustly single-mode hollow-core pcf by resonant filtering of higher-order modes,” Opt. Lett. 41, 1961–1964 (2016). 22. N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. S. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106, 203901 (2011). 23. G. Chang, L.-J. Chen, and F. X. Kärtner, “Fiber-optic cherenkov radiation in the few-cycle regime,” Opt. Express 19, 6635–6647 (2011). 24. K. F. Mak, J. C. Travers, P. Hölzer, N. Y. Joly, and P. S. J. Russell, “Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled kagome-PCF,” Opt. Express 21, 10942–10953 (2013). 25. F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. S. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2, 292–300 (2015). 26. A. Ermolov, K. F. Mak, M. H. Frosz, J. C. Travers, and P. S. J. Russell, “Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber,” Phys. Rev. A 92, 033821 (2015). 27. F. Köttig, F. Tani, J. C. Travers, and P. S. J. Russell, “PHz-wide spectral interference through coherent plasma-induced fission of higher-order solitons,” Phys. Rev. Lett. 118, 263902 (2017). 28. F. Köttig, D. Novoa, F. Tani, M. C. Günendi, M. Cassataro, J. C. Travers, and P. S. Russell, “Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion,” Nat. Com. 8, 813– (2017). 29. M. Michieletto, J. K. Lyngsø, C. Jakobsen, J. Lægsgaard, O. Bang, and T. T. Alkeskjold, “Hollow-core fibers for high power pulse delivery,” Opt. Express 24, 7103–7119 (2016). 30. A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94 μm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4, 193–205 (2013). 31. P. Jaworski, F. Yu, R. R. Maier, W. J. Wadsworth, J. C. Knight, J. D. Shephard, and D. P. Hand, “Picosecond and nanosecond pulse delivery through a hollow-core negative curvature fiber for micro-machining applications,” Opt. Express 21, 22742–22753 (2013). 32. J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. S. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers (invited),” J. Opt. Soc. Am. B 28, A11–A26 (2011). 33. P. S. J. Russell, P. Hölzer, W. Chang, A. Abdolvand, and J. C. Travers, “Hollow-core photonic crystal fibres for gas-based nonlinear optics,” Nat. Photon. 8, 278–286 (2014). 34. P. Hölzer, W. Chang, J. C. Travers, A. Nazarkin, J. Nold, N. Y. Joly, M. F. Saleh, F. Biancalana, and P. S. J. Russell, “Femtosecond nonlinear fiber optics in the ionization regime,” Phys. Rev. Lett. 107, 203901 (2011). 35. M. F. Saleh and F. Biancalana, “Understanding the dynamics of photoionization-induced nonlinear effects and solitons in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. A 84, 063838 (2011). 36. M. F. Saleh, W. Chang, J. C. Travers, P. S. J. Russell, and F. Biancalana, “Plasma-induced asymmetric self-phase modulation and modulational instability in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 109, 113902 (2012). 37. M. S. Habib, C. Markos, O. Bang, andM. Bache, “Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers,” Opt. Lett. 42, 2232–2235 (2017). 38. D. Novoa, M. Cassataro, J. C. Travers, and P. S. J. Russell, “Photoionization-induced emission of tunable few-cycle midinfrared dispersive waves in gas-filled hollow-core photonic crystal fibers,” Phys. Rev. Lett. 115, 033901 (2015). 39. S.-J. Im, A. Husakou, and J. Herrmann, “High-power soliton-induced supercontinuum generation and tunable sub-10-fs VUV pulses from kagome-lattice HC-PCFs,” Opt. Express 18, 5367–5374 (2010). 40. W. Chang, A. Nazarkin, J. C. Travers, J. Nold, P. Hölzer, N. Y. Joly, and P. S. Russell, “Influence of ionization on ultrafast gas-based nonlinear fiber optics,” Opt. Express 19, 21018–21027 (2011). 41. F. Köttig, F. Tani, C. M. Biersach, J. C. Travers, and P. S. Russell, “Generation of microjoule pulses in the deep Vol. 26, No. 19 | 17 Sep 2018 | OPTICS EXPRESS 24358

[1]  A. Urich,et al.  Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures , 2013, Biomedical optics express.

[2]  Fabio Biancalana,et al.  Plasma-induced asymmetric self-phase modulation and modulational instability in gas-filled hollow-core photonic crystal fibers. , 2012, Physical review letters.

[3]  P St J Russell,et al.  Photoionization-Induced Emission of Tunable Few-Cycle Midinfrared Dispersive Waves in Gas-Filled Hollow-Core Photonic Crystal Fibers. , 2015, Physical review letters.

[4]  Ole Bang,et al.  Low-Loss Hollow-Core Anti-Resonant Fibers With Semi-Circular Nested Tubes , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[5]  F. Tani,et al.  Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion , 2017, Nature Communications.

[6]  E. Dianov,et al.  Light transmission in negative curvature hollow core fiber in extremely high material loss region. , 2013, Optics express.

[7]  Ole Bang,et al.  Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes. , 2015, Optics express.

[8]  Federico Belli,et al.  Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber , 2015 .

[9]  E. Dianov,et al.  Demonstration of a waveguide regime for a silica hollow--core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm. , 2011, Optics express.

[10]  M F Saleh,et al.  Femtosecond nonlinear fiber optics in the ionization regime. , 2011, Physical review letters.

[11]  J. Knight,et al.  Hollow antiresonant fibers with reduced attenuation. , 2014, Optics letters.

[12]  Christos Markos,et al.  Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers. , 2017, Optics letters.

[13]  Francesco Poletti,et al.  Nested antiresonant nodeless hollow core fiber. , 2014, Optics express.

[14]  PHz-Wide Spectral Interference Through Coherent Plasma-Induced Fission of Higher-Order Solitons. , 2017, Physical review letters.

[15]  P. Russell,et al.  Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes. , 2016, Optics letters.

[16]  J. Knight,et al.  Experimental study of low-loss single-mode performance in anti-resonant hollow-core fibers. , 2016, Optics express.

[17]  A. Bertram,et al.  A new broadly tunable (7.4-10.2 eV) laser based VUV light source and its first application to aerosol mass spectrometry , 2009 .

[18]  P. Russell,et al.  Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited] , 2011 .

[19]  Philipp Hölzer,et al.  Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled Kagome-PCF. , 2013, Optics express.

[20]  Anton Husakou,et al.  High-power soliton-induced supercontinuum generation and tunable sub-10-fs VUV pulses from kagome-lattice HC-PCFs. , 2010, Optics express.

[21]  Walter Belardi,et al.  Hollow antiresonant fibers with low bending loss. , 2014, Optics express.

[22]  S. Hüfner,et al.  Photoemission spectroscopy—from early days to recent applications , 2005 .

[23]  P St J Russell,et al.  Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber. , 2011, Physical review letters.

[24]  Fei Yu,et al.  Measurement of resonant bend loss in anti-resonant hollow core optical fiber. , 2017, Optics express.

[25]  Takayoshi Kobayashi,et al.  Ultrafast spectroscopy with sub-10 fs deep-ultraviolet pulses. , 2012, Physical chemistry chemical physics : PCCP.

[26]  Fei Yu,et al.  Negative Curvature Hollow-Core Optical Fiber , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[27]  Fei Yu,et al.  Picosecond and nanosecond pulse delivery through a hollow-core Negative Curvature Fiber for micro-machining applications. , 2013, Optics express.

[28]  Ole Bang,et al.  Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements. , 2016, Optics express.

[29]  Amir Abdolvand,et al.  Hollow-core photonic crystal fibres for gas-based nonlinear optics , 2014, Nature Photonics.

[30]  F. Benabid,et al.  Ultralow transmission loss in inhibited-coupling guiding hollow fibers , 2017 .

[31]  Mohammed F. Saleh,et al.  Understanding the dynamics of photoionization-induced nonlinear effects and solitons in gas-filled hollow-core photonic crystal fibers , 2011, 1110.4295.

[32]  Michael H. Frosz,et al.  Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton-plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber , 2015 .

[33]  Franz X. Kärtner,et al.  Fiber-optic Cherenkov radiation in the few-cycle regime , 2011, CLEO 2011.

[34]  Naoto Tamai,et al.  Ultrafast Dynamics of Photochromic Systems. , 2000, Chemical reviews.

[35]  Touhid Bhuiyan,et al.  Hybrid photonic crystal fiber in chemical sensing , 2016, SpringerPlus.