Training Symbol Design for Channel Estimation and IQ Imbalance Compensation in OFDM Systems

In this paper, training symbol designs for estimation of frequency selective channels and compensation of in-phase (I) and quadrature (Q) imbalances on OFDM transmitters and receivers are studied. We utilize cross entropy (CE) optimization techniques together with convex optimization to design training sequence that minimizes the channel estimate mean squared error (MSE) as well as estimating the effect of I/Q mismatch while lowering the peak power of the training signals. The proposed design provide better channel estimate MSE and bit error rate (BER) performances. The efficacies of the proposed designs are corroborated by analysis and simulation results.