Color-bounded hypergraphs, IV: Stable colorings of hypertrees

We consider vertex colorings of hypergraphs in which lower and upper bounds are prescribed for the largest cardinality of a monochromatic subset and/or of a polychromatic subset in each edge. One of the results states that for any integers s>=2 and a>=2 there exists an integer f(s,a) with the following property. If an interval hypergraph admits some coloring such that in each edge E"i at least a prescribed number s"[email protected]?s of colors occur and also each E"i contains a monochromatic subset with a prescribed number a"[email protected]?a of vertices, then a coloring with these properties exists with at most f(s,a) colors. Further results deal with estimates on the minimum and maximum possible numbers of colors and the time complexity of determining those numbers or testing colorability, for various combinations of the four color bounds prescribed. Many interesting problems remain open.

[1]  Csilla Bujtás,et al.  Color-bounded hypergraphs, II: Interval hypergraphs and hypertrees , 2009, Discret. Math..

[2]  Daniel Král,et al.  Mixed hypercacti , 2004, Discret. Math..

[3]  Csilla Bujtás,et al.  Color-bounded hypergraphs, I: General results , 2009, Discret. Math..

[4]  Bujtas Csilla,et al.  COLOR-BOUNDED HYPERGRAPHS, III: MODEL COMPARISON , 2007 .

[5]  Anand Srivastav,et al.  On Constrained Hypergraph Coloring and Scheduling , 2002, APPROX.

[6]  Ewa Drgas-Burchardt,et al.  On chromatic polynomials of hypergraphs , 2006, Electron. Notes Discret. Math..

[7]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[8]  Chi-Jen Lu Deterministic Hypergraph Coloring and Its Applications , 2004, SIAM J. Discret. Math..

[9]  André Kündgen,et al.  Gaps in the Chromatic Spectrum of Face-Constrained Plane Graphs , 2001, Electron. J. Comb..

[10]  Vitaly I. Voloshin,et al.  On the upper chromatic number of a hypergraph , 1995, Australas. J Comb..

[11]  Csilla Bujtás,et al.  Mixed colorings of hypergraphs , 2006, Electron. Notes Discret. Math..

[12]  Vitaly I. Voloshin,et al.  The mixed hypergraphs , 1993, Comput. Sci. J. Moldova.

[13]  Anand Srivastav,et al.  Tight Approximations for Resource Constrained Schedulingand , 1999 .

[14]  Barbara Troncarelli Coloring Mixed Hypergraphs: Theory, Algorithms and Applications , 2003 .

[15]  Daniel Král On Feasible Sets of Mixed Hypergraphs , 2004, Electron. J. Comb..

[16]  Zsolt Tuza,et al.  Uncolorable Mixed Hypergraphs , 2000, Discret. Appl. Math..