Measurement and correlation of physicochemical properties of phosphonium-based deep eutectic solvents at several temperatures (293.15 K–343.15 K) for CO2 capture

[1]  P. Kumar,et al.  Thermal and physical properties of (Choline chloride + urea + l-arginine) deep eutectic solvents , 2016 .

[2]  Y. Ni,et al.  Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation. , 2016, Bioresource technology.

[3]  J. Coutinho,et al.  Thermophysical Properties of Glycols and Glymes , 2015 .

[4]  Ashish Singh,et al.  Experimental isobaric vapor–liquid equilibrium at sub-atmospheric and local atmospheric pressures, volumetric properties and molar refractivity from 293.15 to 313.15K of water+triethylene glycol , 2015 .

[5]  I. Alnashef,et al.  RETRACTED: Neoteric FT-IR investigation on the functional groups of phosphonium-based deep eutectic solvents. , 2015, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[6]  Mei-zhen Lu,et al.  Solubilities of carbon dioxide in the eutectic mixture of levulinic acid (or furfuryl alcohol) and choline chloride , 2015 .

[7]  M. Hashim,et al.  Triethylene glycol based deep eutectic solvents and their physical properties , 2015 .

[8]  Mert Atilhan,et al.  Deep Eutectic Solvents: Physicochemical Properties and Gas Separation Applications , 2015 .

[9]  Marina Cvjetko Bubalo,et al.  Evaluation of toxicity and biodegradability of choline chloride based deep eutectic solvents. , 2015, Ecotoxicology and environmental safety.

[10]  Farouq S. Mjalli,et al.  Solubility of CO2 in deep eutectic solvents: Experiments and modelling using the Peng-Robinson equation of state , 2014 .

[11]  D. Deng,et al.  Solubilities and thermodynamic properties of CO2 in choline-chloride based deep eutectic solvents , 2014 .

[12]  Hua Zhao,et al.  Ternary Deep Eutectic Solvents Tasked for Carbon Dioxide Capture , 2014 .

[13]  S. Pandey,et al.  Densities and Viscosities of (Choline Chloride + Urea) Deep Eutectic Solvent and Its Aqueous Mixtures in the Temperature Range 293.15 K to 363.15 K , 2014 .

[14]  Meng-Hui Li,et al.  Solubility of carbon dioxide in aqueous mixtures of (reline + monoethanolamine) at T = (313.2 to 353.2) K , 2014 .

[15]  D. Deng,et al.  Solubilities of Carbon Dioxide in Eutectic Mixtures of Choline Chloride and Dihydric Alcohols , 2014 .

[16]  B. Schröder,et al.  Understanding the impact of the central atom on the ionic liquid behavior: phosphonium vs ammonium cations. , 2014, The Journal of chemical physics.

[17]  B. Y. Jibril,et al.  Ionic liquids analogues based on potassium carbonate , 2014 .

[18]  Yaru Liu,et al.  Physical Properties of Aqueous Mixtures of Acetamide-LiCl Eutectic Ionic Liquids as a Function of Temperature and Composition , 2014 .

[19]  Meng-Hui Li,et al.  Henry’s constant of carbon dioxide-aqueous deep eutectic solvent (choline chloride/ethylene glycol, choline chloride/glycerol, choline chloride/malonic acid) systems , 2014 .

[20]  A. Russell,et al.  Review of recent advances in carbon dioxide separation and capture , 2013 .

[21]  Mohd Ali Hashim,et al.  Electrical conductivity of ammonium and phosphonium based deep eutectic solvents: Measurements and artificial intelligence-based prediction , 2013 .

[22]  Meng-Hui Li,et al.  Densities, refractive indices, and viscosities of N,N-diethylethanol ammonium chloride–glycerol or –ethylene glycol deep eutectic solvents and their aqueous solutions , 2013 .

[23]  I. Alnashef,et al.  Assessment of cytotoxicity and toxicity for phosphonium-based deep eutectic solvents. , 2013, Chemosphere.

[24]  F. Mjalli,et al.  A novel phosphonium-based deep eutectic catalyst for biodiesel production from industrial low grade crude palm oil , 2013 .

[25]  M. Hashim,et al.  Glycerol-based deep eutectic solvents: Physical properties , 2013 .

[26]  Meng-Hui Li,et al.  Solubility of carbon dioxide in a eutectic mixture of choline chloride and glycerol at moderate pressures , 2013 .

[27]  Meng-Hui Li,et al.  Solubility of carbon dioxide in a choline chloride–ethylene glycol based deep eutectic solvent , 2013 .

[28]  I. Vankelecom,et al.  Physicochemical properties of phosphonium-based and ammonium-based protic ionic liquids† , 2012 .

[29]  F. Mjalli,et al.  Fruit sugar-based deep eutectic solvents and their physical properties , 2012 .

[30]  Thijs J. H. Vlugt,et al.  State-of-the-Art of CO2 Capture with Ionic Liquids , 2012 .

[31]  F. Mjalli,et al.  Liquid–liquid equilibria for the ternary system (phosphonium based deep eutectic solvent–benzene–hexane) at different temperatures: A new solvent introduced , 2012 .

[32]  Saeid Baroutian,et al.  Densities of ammonium and phosphonium based deep eutectic solvents: Prediction using artificial intelligence and group contribution techniques , 2012 .

[33]  Faïçal Larachi,et al.  CO2 capture in alkanolamine/room-temperature ionic liquid emulsions: A viable approach with carbamate crystallization and curbed corrosion behavior , 2012 .

[34]  M. Gutiérrez,et al.  Deep eutectic solvents as both precursors and structure directing agents in the synthesis of nitrogen doped hierarchical carbons highly suitable for CO2 capture , 2011 .

[35]  Lynn F. Gladden,et al.  Glycerol eutectics as sustainable solvent systems , 2010 .

[36]  F. Mjalli,et al.  Phosphonium-Based Ionic Liquids Analogues and Their Physical Properties , 2010 .

[37]  E. Zorȩbski Internal pressure in liquids and binary liquid mixtures , 2009 .

[38]  Tejwant Singh,et al.  Temperature Dependence of Physical Properties of Imidazolium Based Ionic Liquids: Internal Pressure and Molar Refraction , 2009 .

[39]  M. Gomes,et al.  Densities and refractive indices of imidazolium- and phosphonium-based ionic liquids: Effect of temperature, alkyl chain length, and anion , 2009 .

[40]  Jason E. Bara,et al.  Guide to CO2 Separations in Imidazolium-Based Room-Temperature Ionic Liquids , 2009 .

[41]  J. Coutinho,et al.  A group contribution method for viscosity estimation of ionic liquids , 2008 .

[42]  V. Rico-Ramírez,et al.  Supplementary Densities and Viscosities of Aqueous Solutions of Diethylene Glycol from (283.15 to 353.15) K , 2008 .

[43]  Timothy E. Fout,et al.  Advances in CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program ☆ , 2008 .

[44]  A. Katritzky,et al.  Combustible ionic liquids by design: is laboratory safety another ionic liquid myth? , 2006, Chemical communications.

[45]  R. D. Verma,et al.  Review of ionic liquids with fluorine-containing anions , 2006 .

[46]  J. Tojo,et al.  Excess molar internal pressures and changes in refractive indices of acetone + methanol + (2-methyl-1-propanol or 3-methyl-1-butanol) at 298.15 K , 2005 .

[47]  Sushma Chauhan,et al.  Chemical and biochemical transformations in ionic liquids , 2005 .

[48]  D. Macfarlane,et al.  Thermal Degradation of Ionic Liquids at Elevated Temperatures , 2004 .

[49]  David L Davies,et al.  Novel solvent properties of choline chloride/urea mixtures. , 2003, Chemical communications.

[50]  A. M. Awwad,et al.  Relative Permittivities, Densities, and Refractive Indices of the Binary Mixtures of Sulfolane with Ethylene Glycol, Diethylene Glycol, and Poly(ethylene glycol) at 303.15 K , 2002 .

[51]  Ioanna Ntai,et al.  CO(2) capture by a task-specific ionic liquid. , 2002, Journal of the American Chemical Society.

[52]  E. Goharshadi,et al.  Computation of internal pressure of liquids using a statistical mechanical equation of state , 2001 .

[53]  M. Cocchi,et al.  Density and volumetric properties of ethane-1,2-diol+di-ethylen-glycol mixtures at different temperatures , 2000 .

[54]  C. Yaws Chemical properties handbook , 1999 .

[55]  Tejraj M. Aminabhavi,et al.  Density, Viscosity, Refractive Index, and Speed of Sound in Aqueous Mixtures of N,N-Dimethylformamide, Dimethyl Sulfoxide, N,N-Dimethylacetamide, Acetonitrile, Ethylene Glycol, Diethylene Glycol, 1,4-Dioxane, Tetrahydrofuran, 2-Methoxyethanol, and 2-Ethoxyethanol at 298.15 K , 1995 .

[56]  E. A. Müller,et al.  DENSITIES AND EXCESS VOLUMES IN AQUEOUS POLY(ETHYLENE GLYCOL) SOLUTIONS , 1991 .