A novel background-weighted histogram scheme based on foreground saliency for mean-shift tracking

Effective appearance models are one critical factor for robust object tracking. In this paper, we introduce foreground feature saliency concept into the background modelling, and put forward a novel foreground saliency-based background-weighted histogram scheme (FSBWH) for target representation and tracking, which exploits salient features from both foreground and background. We think that background and foreground salient features are both crucial for target representation and tracking. Experimental results show that the proposed FSBWH scheme can improve the robustness and performance of tracker significantly especially in complex occlusions and similar background scenes.

[1]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Huchuan Lu,et al.  Object tracking by multi-cues spatial pyramid matching , 2010, 2010 IEEE International Conference on Image Processing.

[3]  Lijiang Chen,et al.  Adaptive edge-based mean shift for drastic change gray target tracking , 2015 .

[4]  Kai Chen,et al.  Efficient Mean-Shift Tracking Using an Improved Weighted Histogram Scheme , 2014, KSII Trans. Internet Inf. Syst..

[5]  Jiri Matas,et al.  Robust scale-adaptive mean-shift for tracking , 2013, Pattern Recognit. Lett..

[6]  D. Zhang,et al.  Robust mean-shift tracking with corrected background-weighted histogram , 2012 .

[7]  Bruce A. Draper,et al.  Visual object tracking using adaptive correlation filters , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[8]  Ehud Rivlin,et al.  Robust Fragments-based Tracking using the Integral Histogram , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[9]  Junji Yamato,et al.  Memory-Based Particle Filter for Tracking Objects with Large Variation in Pose and Appearance , 2010, ECCV.

[10]  Yuan Li,et al.  Tracking in Low Frame Rate Video: A Cascade Particle Filter with Discriminative Observers of Different Lifespans , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Jiri Matas,et al.  Robust scale-adaptive mean-shift for tracking , 2013, Pattern Recognition Letters.

[12]  Rui Caseiro,et al.  Exploiting the Circulant Structure of Tracking-by-Detection with Kernels , 2012, ECCV.

[13]  D. Zhang,et al.  Scale and orientation adaptive mean shift tracking , 2012 .

[14]  Shai Avidan,et al.  Support vector tracking , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Markus Vincze,et al.  Self-monitoring to improve robustness of 3D object tracking for robotics , 2011, 2011 IEEE International Conference on Robotics and Biomimetics.

[16]  D. Moroni,et al.  Object tracking in video-surveillance , 2009, Pattern Recognition and Image Analysis.

[17]  Stanley T. Birchfield,et al.  Spatiograms versus histograms for region-based tracking , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[18]  Patrick Pérez,et al.  Color-Based Probabilistic Tracking , 2002, ECCV.

[19]  Guang-Zhong Yang,et al.  Gaze contingent cartesian control of a robotic arm for laparoscopic surgery , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[20]  Hugues Benoit-Cattin,et al.  Unsupervised spatio-temporal filtering of image sequences. A mean-shift specification , 2015, Pattern Recognit. Lett..

[21]  Michael Felsberg,et al.  Adaptive Color Attributes for Real-Time Visual Tracking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Xie Zhongyu,et al.  Mean shift target tracking with spatiogram corrected background- weighted histogram , 2014 .

[23]  Weiwei Zhang,et al.  On-Line Ensemble SVM for Robust Object Tracking , 2007, ACCV.

[24]  Shiming Xiang,et al.  MEAN-shift tracking algorithm with weight fusion strategy , 2011, 2011 18th IEEE International Conference on Image Processing.

[25]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[26]  Hanzi Wang,et al.  Graph mode-based contextual kernels for robust SVM tracking , 2011, 2011 International Conference on Computer Vision.

[27]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Rasmus Larsen,et al.  Motion Tracking for Medical Imaging: A Nonvisible Structured Light Tracking Approach , 2012, IEEE Transactions on Medical Imaging.

[29]  Bohyung Han,et al.  Learning occlusion with likelihoods for visual tracking , 2011, 2011 International Conference on Computer Vision.

[30]  Li Bai,et al.  Minimum error bounded efficient ℓ1 tracker with occlusion detection , 2011, CVPR 2011.

[31]  Shuxiao Li,et al.  Visual object tracking using spatial Context Information and Global tracking skills , 2014, Comput. Vis. Image Underst..

[32]  Shengsheng Yu,et al.  Object Tracking with a Novel Method Based on FS-CBWH within Mean-Shift Framework , 2014, ISNN.