Discussion of “Turbulent Flow Friction Factor Calculation Using a Mathematically Exact Alternative to the Colebrook–White Equation” by Jagadeesh R. Sonnad and Chetan T. Goudar
暂无分享,去创建一个
[1] Dih Barr,et al. TECHNICAL NOTE. SOLUTIONS OF THE COLEBROOK-WHITE FUNCTION FOR RESISTANCE TO UNIFORM TURBULENT FLOW. , 1981 .
[2] N. Sylvester,et al. Explicit approximations to the solution of Colebrook's friction factor equation , 1982 .
[3] M. Roustan,et al. Nouvelle méthode de détermination en régime transitoire du coefficient de transfert de matière dans un réacteur biphasique (air-eau) , 1977 .
[4] Stuart W. Churchill,et al. Empirical expressions for the shear stress in turbulent flow in commercial pipe , 1973 .
[5] G. F. Round. An explicit approximation for the friction factor‐reynolds number relation for rough and smooth pipes , 1980 .
[6] Grant Keady. Colebrook-White Formula for Pipe Flows , 1998 .
[7] Joseph B. Franzini,et al. Fluid Mechanics with Engineering Applications. 6th Ed. By R. L.DAUGHERTY and J. B. FRANZINI. McGraw-Hill. 1965. 574 pp. $9.95 or 80s. Fluid Dynamics. By J. W. DAILY and D. R. F. HARLEMAN. Addison Wesley. 1966. 454 pp. $12.50 or 94s. , 1967, Journal of Fluid Mechanics.
[8] Chetan T. Goudar,et al. Constraints for Using Lambert W Function-Based Explicit Colebrook–White Equation , 2004 .
[9] Chetan T. Goudar,et al. Turbulent Flow Friction Factor Calculation Using a Mathematically Exact Alternative to the Colebrook–White Equation , 2006 .
[10] A. K. Jain,et al. Accurate Explicit Equation for Friction Factor , 1976 .
[11] Prabhata K. Swamee,et al. Explicit Equations for Pipe-Flow Problems , 1976 .
[12] S. Haaland. Simple and Explicit Formulas for the Friction Factor in Turbulent Pipe Flow , 1983 .
[13] Antonio Monzón,et al. Improved explicit equations for estimation of the friction factor in rough and smooth pipes , 2002 .
[14] N. Chen. An Explicit Equation for Friction Factor in Pipe , 1979 .