Discussion of “Turbulent Flow Friction Factor Calculation Using a Mathematically Exact Alternative to the Colebrook–White Equation” by Jagadeesh R. Sonnad and Chetan T. Goudar

[1]  Dih Barr,et al.  TECHNICAL NOTE. SOLUTIONS OF THE COLEBROOK-WHITE FUNCTION FOR RESISTANCE TO UNIFORM TURBULENT FLOW. , 1981 .

[2]  N. Sylvester,et al.  Explicit approximations to the solution of Colebrook's friction factor equation , 1982 .

[3]  M. Roustan,et al.  Nouvelle méthode de détermination en régime transitoire du coefficient de transfert de matière dans un réacteur biphasique (air-eau) , 1977 .

[4]  Stuart W. Churchill,et al.  Empirical expressions for the shear stress in turbulent flow in commercial pipe , 1973 .

[5]  G. F. Round An explicit approximation for the friction factor‐reynolds number relation for rough and smooth pipes , 1980 .

[6]  Grant Keady Colebrook-White Formula for Pipe Flows , 1998 .

[7]  Joseph B. Franzini,et al.  Fluid Mechanics with Engineering Applications. 6th Ed. By R. L.DAUGHERTY and J. B. FRANZINI. McGraw-Hill. 1965. 574 pp. $9.95 or 80s. Fluid Dynamics. By J. W. DAILY and D. R. F. HARLEMAN. Addison Wesley. 1966. 454 pp. $12.50 or 94s. , 1967, Journal of Fluid Mechanics.

[8]  Chetan T. Goudar,et al.  Constraints for Using Lambert W Function-Based Explicit Colebrook–White Equation , 2004 .

[9]  Chetan T. Goudar,et al.  Turbulent Flow Friction Factor Calculation Using a Mathematically Exact Alternative to the Colebrook–White Equation , 2006 .

[10]  A. K. Jain,et al.  Accurate Explicit Equation for Friction Factor , 1976 .

[11]  Prabhata K. Swamee,et al.  Explicit Equations for Pipe-Flow Problems , 1976 .

[12]  S. Haaland Simple and Explicit Formulas for the Friction Factor in Turbulent Pipe Flow , 1983 .

[13]  Antonio Monzón,et al.  Improved explicit equations for estimation of the friction factor in rough and smooth pipes , 2002 .

[14]  N. Chen An Explicit Equation for Friction Factor in Pipe , 1979 .