Sparse optimization for nonconvex group penalized estimation

We consider a linear regression model where there are group structures in covariates. The group LASSO has been proposed for group variable selections. Many nonconvex penalties such as smoothly clipped absolute deviation and minimax concave penalty were extended to group variable selection problems. The group coordinate descent (GCD) algorithm is used popularly for fitting these models. However, the GCD algorithms are hard to be applied to nonconvex group penalties due to computational complexity unless the design matrix is orthogonal. In this paper, we propose an efficient optimization algorithm for nonconvex group penalties by combining the concave convex procedure and the group LASSO algorithm. We also extend the proposed algorithm for generalized linear models. We evaluate numerical efficiency of the proposed algorithm compared to existing GCD algorithms through simulated data and real data sets.

[1]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[2]  Fengrong Wei,et al.  Group coordinate descent algorithms for nonconvex penalized regression , 2012, Comput. Stat. Data Anal..

[3]  Hao Helen Zhang,et al.  Component selection and smoothing in smoothing spline analysis of variance models -- COSSO , 2003 .

[4]  Jian Huang,et al.  Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors , 2012, Statistics and Computing.

[5]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[6]  Francis R. Bach,et al.  Consistency of the group Lasso and multiple kernel learning , 2007, J. Mach. Learn. Res..

[7]  J. Friedman,et al.  Estimating Optimal Transformations for Multiple Regression and Correlation. , 1985 .

[8]  Yongdai Kim,et al.  Global optimality of nonconvex penalized estimators , 2012 .

[9]  P. Tseng Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization , 2001 .

[10]  Yongdai Kim,et al.  Quadratic approximation for nonconvex penalized estimations with a diverging number of parameters , 2012 .

[11]  Yongdai Kim,et al.  Smoothly Clipped Absolute Deviation on High Dimensions , 2008 .

[12]  W. Wong,et al.  On ψ-Learning , 2003 .

[13]  Alan L. Yuille,et al.  The Concave-Convex Procedure , 2003, Neural Computation.

[14]  Cun-Hui Zhang Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.

[15]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[16]  R. Tibshirani,et al.  Generalized Additive Models , 1986 .

[17]  Katya Scheinberg,et al.  Noname manuscript No. (will be inserted by the editor) Efficient Block-coordinate Descent Algorithms for the Group Lasso , 2022 .

[18]  Shuangge Ma,et al.  Semiparametric Regression Pursuit. , 2012, Statistica Sinica.

[19]  R. Tibshirani,et al.  A note on the group lasso and a sparse group lasso , 2010, 1001.0736.

[20]  Junzhou Huang,et al.  The Benefit of Group Sparsity , 2009 .

[21]  Jian Huang,et al.  A Selective Review of Group Selection in High-Dimensional Models. , 2012, Statistical science : a review journal of the Institute of Mathematical Statistics.

[22]  Wenjiang J. Fu Penalized Regressions: The Bridge versus the Lasso , 1998 .

[23]  Jason Weston,et al.  Large Scale Transductive SVMs , 2006, J. Mach. Learn. Res..

[24]  Jian Huang,et al.  Consistent group selection in high-dimensional linear regression. , 2010, Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability.

[25]  R. Tibshirani,et al.  PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.

[26]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[27]  Sunghoon Kwon,et al.  A modified local quadratic approximation algorithm for penalized optimization problems , 2016, Comput. Stat. Data Anal..

[28]  Hao Helen Zhang,et al.  Component selection and smoothing in multivariate nonparametric regression , 2006, math/0702659.

[29]  M. Drton,et al.  Exact block-wise optimization in group lasso and sparse group lasso for linear regression , 2010, 1010.3320.

[30]  Hongzhe Li,et al.  Group SCAD regression analysis for microarray time course gene expression data , 2007, Bioinform..