Sparse optimization for nonconvex group penalized estimation
暂无分享,去创建一个
Yongdai Kim | Sangin Lee | Yongdai Kim | Sangin Lee | Miae Oh | Miae Oh
[1] M. Yuan,et al. Model selection and estimation in regression with grouped variables , 2006 .
[2] Fengrong Wei,et al. Group coordinate descent algorithms for nonconvex penalized regression , 2012, Comput. Stat. Data Anal..
[3] Hao Helen Zhang,et al. Component selection and smoothing in smoothing spline analysis of variance models -- COSSO , 2003 .
[4] Jian Huang,et al. Group descent algorithms for nonconvex penalized linear and logistic regression models with grouped predictors , 2012, Statistics and Computing.
[5] Eric R. Ziegel,et al. Generalized Linear Models , 2002, Technometrics.
[6] Francis R. Bach,et al. Consistency of the group Lasso and multiple kernel learning , 2007, J. Mach. Learn. Res..
[7] J. Friedman,et al. Estimating Optimal Transformations for Multiple Regression and Correlation. , 1985 .
[8] Yongdai Kim,et al. Global optimality of nonconvex penalized estimators , 2012 .
[9] P. Tseng. Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization , 2001 .
[10] Yongdai Kim,et al. Quadratic approximation for nonconvex penalized estimations with a diverging number of parameters , 2012 .
[11] Yongdai Kim,et al. Smoothly Clipped Absolute Deviation on High Dimensions , 2008 .
[12] W. Wong,et al. On ψ-Learning , 2003 .
[13] Alan L. Yuille,et al. The Concave-Convex Procedure , 2003, Neural Computation.
[14] Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.
[15] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[16] R. Tibshirani,et al. Generalized Additive Models , 1986 .
[17] Katya Scheinberg,et al. Noname manuscript No. (will be inserted by the editor) Efficient Block-coordinate Descent Algorithms for the Group Lasso , 2022 .
[18] Shuangge Ma,et al. Semiparametric Regression Pursuit. , 2012, Statistica Sinica.
[19] R. Tibshirani,et al. A note on the group lasso and a sparse group lasso , 2010, 1001.0736.
[20] Junzhou Huang,et al. The Benefit of Group Sparsity , 2009 .
[21] Jian Huang,et al. A Selective Review of Group Selection in High-Dimensional Models. , 2012, Statistical science : a review journal of the Institute of Mathematical Statistics.
[22] Wenjiang J. Fu. Penalized Regressions: The Bridge versus the Lasso , 1998 .
[23] Jason Weston,et al. Large Scale Transductive SVMs , 2006, J. Mach. Learn. Res..
[24] Jian Huang,et al. Consistent group selection in high-dimensional linear regression. , 2010, Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability.
[25] R. Tibshirani,et al. PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.
[26] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[27] Sunghoon Kwon,et al. A modified local quadratic approximation algorithm for penalized optimization problems , 2016, Comput. Stat. Data Anal..
[28] Hao Helen Zhang,et al. Component selection and smoothing in multivariate nonparametric regression , 2006, math/0702659.
[29] M. Drton,et al. Exact block-wise optimization in group lasso and sparse group lasso for linear regression , 2010, 1010.3320.
[30] Hongzhe Li,et al. Group SCAD regression analysis for microarray time course gene expression data , 2007, Bioinform..