Future instrumentation for solar physics: a double channel MOF imager on board ASI Space Mission ADAHELI

A Magneto-Optical Filter-based system has been proposed as an optional payload for ASI’s low-budget Solar Mission ADAHELI, which has completed its Phase A feasibility study. The instrument is capable of providing simultaneous Dopplergrams, intensity and magnetic solar full-disk maps using the potassium 770 nm and sodium 589 nm solar Fraunhofer lines. The instrument is a version, re-designed for a space environment, of the one which has run an observing campaign at the South Pole in 2008 with unprecedented performance. The MOF-based system we present here is a low-cost, low-weight instrument, thus particularly fit to space applications, capable of providing stability and sensitivity of signals on long-term observations. The instrument will explore regions of the oscillation spectrum not available to other missions’ instruments.

[1]  Alessandro Cacciani,et al.  Magnetic Contamination and Correction in Sodium Dopplergrams , 1997 .

[2]  A. Warmuth,et al.  An interpretation of the $\vec{I-V}$ phase background based on observed plasma jets , 2002 .

[3]  M. Mauro Helioseismology: A Fantastic Tool to Probe the Interior of the Sun , 2012, 1212.5077.

[4]  E. Rhodes,et al.  Constancy of Intermediate-degree p-Mode Frequencies During the Declining Phase of Solar Cycle 21 , 1987 .

[5]  C. J. Wolfson,et al.  The Solar Oscillations Investigation - Michelson Doppler Imager , 1995 .

[6]  P. Moretti,et al.  A model to interpret the intensity-velocity and velocity-velocity phase differences from solar observations obtained with magneto-optical filters , 2004 .

[7]  E. Fossat The IRIS network for full disk helioseismology: Present status of the programme , 1991 .

[8]  J. M. Herreros,et al.  Global Oscillations at Low Frequency from the SOHO mission (GOLF) , 1995 .

[9]  S. Jefferies,et al.  Seismology of the solar atmosphere , 2004 .

[10]  P. Moretti,et al.  The intensity-velocity phase difference with Magneto-Optical filters , 2002 .

[11]  H. Kjeldsen,et al.  Evidence That Solar Flares Drive Global Oscillations in the Sun , 2008, 0803.3137.

[12]  Arnold Hanslmeier,et al.  The source of the solar oscillations: Convective or magnetic? , 2001 .

[13]  H. Zirin,et al.  Taiwan Oscillation Network , 1995 .

[14]  S. Jefferies,et al.  Diagnostic of the Solar Atmosphere through Two Level Doppler and Magnetic Measurements , 2005 .

[15]  Stuart M. Jefferies,et al.  Observational signatures of the interaction between acoustic waves and the solar magnetic canopy , 2007 .

[16]  G. Severino,et al.  Accurate Intensity – Velocity Phase Difference in the Potassium Resonance Line Obtained with VAMOS , 2008 .

[17]  Stuart M. Jefferies,et al.  Magnetoacoustic Portals and the Basal Heating of the Solar Chromosphere , 2006 .

[18]  P. Moretti Can Dopplergrams be corrected for straylight? , 2000 .

[19]  A. Warmuth,et al.  Full-disk magnetic oscillations in the solar photosphere , 2003 .

[20]  Stuart M. Jefferies,et al.  Helioseismic Mapping of the Magnetic Canopy in the Solar Chromosphere , 2004 .

[21]  J. Stenflo Global wave patterns in the Sun's magnetic field , 1988, Astrophysics and Space Science.

[22]  R. K. Ulrich,et al.  The Global Oscillation Network Group (GONG) Project , 1996, Science.

[23]  Antonio Eff-Darwich,et al.  Tracking Solar Gravity Modes: The Dynamics of the Solar Core , 2007, Science.

[24]  A. Warmuth,et al.  NOAA AR 8210: EVOLUTION AND FLARES FROM MULTIBAND DIAGNOSTICS , 2000 .

[25]  Richard C. Willson,et al.  VIRGO: Experiment for helioseismology and solar irradiance monitoring , 1995 .

[26]  Alessandro Cacciani,et al.  MEASURING DOPPLER AND MAGNETIC FIELDS SIMULTANEOUSLY , 1997 .

[27]  T. Rimmele,et al.  Three-dimensional structure of solar active regions , 1998 .