De Bruijn-Erdős-type theorems for graphs and posets
暂无分享,去创建一个
Guillaume Lagarde | Abhishek Methuku | David Malec | Pierre Aboulker | David L. Malec | Casey Tompkins | C. Tompkins | Abhishek Methuku | Pierre Aboulker | Guillaume Lagarde
[1] Xiaomin Chen,et al. Graph metric with no proper inclusion between lines , 2014, Discret. Appl. Math..
[2] L. Mirsky. A Dual of Dilworth's Decomposition Theorem , 1971 .
[3] Xiaomin Chen,et al. Problems related to a de Bruijn-Erdös theorem , 2008, Discret. Appl. Math..
[4] P. Erdös,et al. ON A COMBINATORIAL PROBLEM . 11 , 2004 .
[5] K. Menger. Untersuchungen über allgemeine Metrik , 1928 .
[6] Balázs Patkós,et al. Towards a de Bruijn–Erdős Theorem in the $$L_1$$-Metric , 2012, Discret. Comput. Geom..
[7] Vasek Chvátal,et al. Sylvester–Gallai Theorem and Metric Betweenness , 2004, Discret. Comput. Geom..
[8] H. Coxeter,et al. Introduction to Geometry , 1964, The Mathematical Gazette.
[9] Ehsan Chiniforooshan,et al. Number of lines in hypergraphs , 2014, Discret. Appl. Math..
[10] Pierre Aboulker,et al. The Chen-Chvátal conjecture for metric spaces induced by distance-hereditary graphs , 2013, Eur. J. Comb..
[11] Ehsan Chiniforooshan,et al. A de Bruijn - Erdős theorem and metric spaces , 2009, Discret. Math. Theor. Comput. Sci..
[12] Ehsan Chiniforooshan,et al. Lines in hypergraphs , 2013, Comb..
[13] Vašek Chvátal,et al. A de Bruijn-Erdős theorem for 1–2 metric spaces , 2012, 1205.1170.