Subdivision Methods for Geometric Design: A Constructive Approach
暂无分享,去创建一个
[1] Dimitris N. Metaxas,et al. Realistic Animation of Liquids , 1996, Graphics Interface.
[2] Tom Lyche,et al. Cones and recurrence relations for simplex splines , 1987 .
[3] Dimitris N. Metaxas,et al. Modeling the motion of a hot, turbulent gas , 1997, SIGGRAPH.
[4] Malcolm A. Sabin,et al. Non-uniform recursive subdivision surfaces , 1998, SIGGRAPH.
[5] Ahmad H. Nasri,et al. Interpolating meshes of boundary intersecting curves by subdivision surfaces , 2000, The Visual Computer.
[6] Klaus Höllig,et al. B-splines from parallelepipeds , 1982 .
[7] Nira Dyn,et al. Interpolation of scattered Data by radial Functions , 1987, Topics in Multivariate Approximation.
[8] Hartmut Prautzsch,et al. Freeform splines , 1997, Computer Aided Geometric Design.
[9] Louis A. Hageman,et al. Iterative Solution of Large Linear Systems. , 1971 .
[10] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[11] Peter Schröder,et al. Wavelets in computer graphics , 1996, Proc. IEEE.
[12] Michael F. Barnsley,et al. Fractals everywhere , 1988 .
[13] Lyle Ramshaw,et al. Blossoms are polar forms , 1989, Comput. Aided Geom. Des..
[14] Manfredo P. do Carmo,et al. Differential geometry of curves and surfaces , 1976 .
[15] C. Micchelli,et al. Recent Progress in multivariate splines , 1983 .
[16] Helmut Pottmann,et al. Symmetric Tchebycheffian B-spline schemes , 1994 .
[17] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[18] Leif Kobbelt,et al. Interpolatory Subdivision on Open Quadrilateral Nets with Arbitrary Topology , 1996, Comput. Graph. Forum.
[19] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[20] Wolfgang Böhm. On the efficiency of knot insertion algorithms , 1985, Comput. Aided Geom. Des..
[21] Leif Kobbelt,et al. √3-subdivision , 2000, SIGGRAPH.
[22] D. Brandt,et al. Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .
[23] Wolfgang Dahmen,et al. Computation of inner products of multivariate B-splines , 1981 .
[24] Joe Warren,et al. Sparse Filter Banks for Binary Subdivision Schemes , 1996 .
[25] Peter Schröder,et al. Multiresolution signal processing for meshes , 1999, SIGGRAPH.
[26] G. Farin. Curves and Surfaces for Cagd: A Practical Guide , 2001 .
[27] Tom Lyche,et al. Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics , 1980 .
[28] Joe D. Warren,et al. Subdivision Schemes for Thin Plate Splines , 1998, Comput. Graph. Forum.
[29] Imre Lakatos,et al. On the Uses of Rigorous Proof. (Book Reviews: Proofs and Refutations. The Logic of Mathematical Discovery) , 1977 .
[30] Murray R. Spiegel,et al. Schaum's outline of theory and problems of calculus of finite differences and difference equations , 1971 .
[31] Jos Stam,et al. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.
[32] I. N. Sneddon,et al. Boundary value problems , 2007 .
[33] Richard F. Riesenfeld,et al. Discrete box splines and refinement algorithms , 1984, Comput. Aided Geom. Des..
[34] Gavin S. P. Miller,et al. Rapid, stable fluid dynamics for computer graphics , 1990, SIGGRAPH.
[35] Tom Lyche,et al. Control curves and knot insertion for trigonometric splines , 1995, Adv. Comput. Math..
[36] Gerald E. Farin,et al. NURBS: From Projective Geometry to Practical Use , 1999 .
[37] Ulrich Reif,et al. Degree estimates for Ck‐piecewise polynomial subdivision surfaces , 1999, Adv. Comput. Math..
[38] Hartmut Prautzsch,et al. Box Splines , 2002, Handbook of Computer Aided Geometric Design.
[39] Hartmut Prautzsch,et al. Smoothness of subdivision surfaces at extraordinary points , 1998, Adv. Comput. Math..
[40] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[41] Henning Biermann,et al. Piecewise smooth subdivision surfaces with normal control , 2000, SIGGRAPH.
[42] C. Micchelli. On a numerically efficient method for computing multivariate B-splines , 1979 .
[43] Tom Lyche,et al. Construction of Exponential Tension B-splines of Arbitrary Order , 1991, Curves and Surfaces.
[44] Jörg Peters,et al. The simplest subdivision scheme for smoothing polyhedra , 1997, TOGS.
[45] Luiz Velho,et al. 4-8 Subdivision , 2001, Comput. Aided Geom. Des..
[46] C. Micchelli,et al. Uniform refinement of curves , 1989 .
[47] J. Warren,et al. Subdivision methods for geometric design , 1995 .
[48] Malcolm A. Sabin,et al. Behaviour of recursive division surfaces near extraordinary points , 1998 .
[49] Zhang Jiwen,et al. C-curves: An extension of cubic curves , 1996, Comput. Aided Geom. Des..
[50] S. Rippa,et al. Numerical Procedures for Surface Fitting of Scattered Data by Radial Functions , 1986 .
[51] Joe D. Warren,et al. Subdivision schemes for fluid flow , 1999, SIGGRAPH.
[52] Audra E. Kosh,et al. Linear Algebra and its Applications , 1992 .
[53] G. Wahba,et al. Some New Mathematical Methods for Variational Objective Analysis Using Splines and Cross Validation , 1980 .
[54] Norishige Chiba,et al. Visual simulation of water currents using a particle-based behavioural model , 1995, Comput. Animat. Virtual Worlds.
[55] J. Thorpe,et al. Lecture Notes on Elementary Topology and Geometry. , 1967 .
[56] D. Schweikert. An Interpolation Curve Using a Spline in Tension , 1966 .
[57] Charles A. Micchelli,et al. Computing curves invariant under halving , 1987, Comput. Aided Geom. Des..
[58] Chandrajit L. Bajaj,et al. Automatic parameterization of rational curves and surfaces III: Algebraic plane curves , 1988, Comput. Aided Geom. Des..
[59] Tony DeRose,et al. Efficient, fair interpolation using Catmull-Clark surfaces , 1993, SIGGRAPH.
[60] R. N. Desmarais,et al. Interpolation using surface splines. , 1972 .
[61] Ulrich Reif,et al. Curvature integrability of subdivision surfaces , 2001, Adv. Comput. Math..
[62] Denis Z orin. Smoothness of Stationary Subdivision on Irregular Meshes , 1998 .
[63] I. J. Schoenberg,et al. On Pólya frequency functions IV: The fundamental spline functions and their limits , 1966 .
[64] William L. Briggs,et al. A multigrid tutorial , 1987 .
[65] W. Fleming. Functions of Several Variables , 1965 .
[66] Tony DeRose,et al. Subdivision surfaces in character animation , 1998, SIGGRAPH.
[67] Joe D. Warren,et al. A subdivision scheme for surfaces of revolution , 2001, Comput. Aided Geom. Des..
[68] Eric W. Weisstein,et al. The CRC concise encyclopedia of mathematics , 1999 .
[69] C. D. Boor,et al. On splines and their minimum properties , 1966 .
[70] M. A. Sabin,et al. Cubic Recursive Division With Bounded Curvature , 1991, Curves and Surfaces.
[71] Helmut Pottmann,et al. Helix splines as an example of affine Tchebycheffian splines , 1994, Adv. Comput. Math..
[72] Henrik WeimerAbstract,et al. Variational Subdivision for Natural Cubic Splines , 1998 .
[73] Wolfgang Dahmen,et al. Subdivision algorithms for the generation of box spline surfaces , 1984, Comput. Aided Geom. Des..
[74] Roland Glowinski,et al. An introduction to the mathematical theory of finite elements , 1976 .
[75] E. Kunz. Introduction to commutative algebra and algebraic geometry , 1984 .
[76] Y. Meyer,et al. Wavelets and Filter Banks , 1991 .
[77] C. Micchelli,et al. Stationary Subdivision , 1991 .
[78] George Merrill Chaikin,et al. An algorithm for high-speed curve generation , 1974, Comput. Graph. Image Process..
[79] John Charles Fields. Theory of the algebraic functions of a complex variabel , .
[80] Gilles Deslauriers,et al. Symmetric iterative interpolation processes , 1989 .
[81] Ayman Habib,et al. Edge and vertex insertion for a class of C1 subdivision surfaces , 1999, Comput. Aided Geom. Des..
[82] Joe Warren,et al. Binary Subdivision Schemes for Functions over Irregular Knot Sequences , 1995 .
[83] M LaneJeffrey,et al. A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980 .
[84] Jim X. Chen,et al. Toward Interactive-Rate Simulation of Fluids with Moving Obstacles Using Navier-Stokes Equations , 1995, CVGIP Graph. Model. Image Process..
[85] Tony DeRose,et al. Piecewise smooth surface reconstruction , 1994, SIGGRAPH.
[86] Wolfgang Dahmen,et al. Multivariate B-Splines — Recurrence Relations and Linear Combinations of Truncated Powers , 1979 .
[87] Nira Dyn,et al. Analysis of uniform binary subdivision schemes for curve design , 1991 .
[88] D. T. Kaplan,et al. Finite-Difference Equations , 1995 .
[89] Ahmad H. Nasri,et al. Curve interpolation in recursively generated B-spline surfaces over arbitrary topology , 1997, Comput. Aided Geom. Des..
[90] Gavin S. P. Miller,et al. Globular dynamics: A connected particle system for animating viscous fluids , 1989, Comput. Graph..
[91] Peter Schröder,et al. Trimming for subdivision surfaces , 2001, Comput. Aided Geom. Des..
[92] Jörg Peters,et al. Computing curvature bounds for bounded curvature subdivision , 2001, Comput. Aided Geom. Des..
[93] Alyn P. Rockwood,et al. Interactive curves and surfaces - a multimedia tutorial and CAGD , 1996 .
[94] N. Dyn,et al. A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.
[95] N. Dyn,et al. Multiresolution Analysis by Infinitely Differentiable Compactly Supported Functions , 1995 .
[96] H. Piaggio. Differential Geometry of Curves and Surfaces , 1952, Nature.
[97] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[98] Hartmut Prautzsch,et al. A G2-Subdivision Algorithm , 1996, Geometric Modelling.
[99] S. S. Abi-Ezzi,et al. The graphical processing of B-splines in a highly dynamic environment , 1990 .
[100] Peter Schröder,et al. A multiresolution framework for variational subdivision , 1998, TOGS.
[101] Hans-Peter Seidel,et al. An introduction to polar forms , 1993, IEEE Computer Graphics and Applications.
[102] C. D. Boor,et al. On Calculating B-splines , 1972 .
[103] Michael E. Mortenson. Computer graphics handbook: geometry and mathematics , 1990 .
[104] A. K. Cline. Scalar- and planar-valued curve fitting using splines under tension , 1974, Commun. ACM.
[105] J. Warren. On algebraic surfaces meeting with geometric continuity , 1986 .
[106] Leif Kobbelt,et al. A variational approach to subdivision , 1996, Comput. Aided Geom. Des..
[107] C. Micchelli,et al. Banded matrices with banded inverses, II: Locally finite decomposition of spline spaces , 1993 .
[108] Charles T. Loop,et al. Smooth Subdivision Surfaces Based on Triangles , 1987 .
[109] Eugene Fiume,et al. Turbulent wind fields for gaseous phenomena , 1993, SIGGRAPH.
[110] Hans-Peter Seidel,et al. Interactive multi-resolution modeling on arbitrary meshes , 1998, SIGGRAPH.
[111] D. Levin,et al. Analysis of asymptotically equivalent binary subdivision schemes , 1995 .
[112] Josef Hoschek,et al. Fundamentals of computer aided geometric design , 1996 .
[113] F. Holt. Toward a curvature-continuous stationary subdivision algorithm , 1996 .
[114] Jörg Peters,et al. Gaussian and Mean Curvature of Subdivision Surfaces , 2000, IMA Conference on the Mathematics of Surfaces.
[115] Peter Schröder,et al. Interpolating Subdivision for meshes with arbitrary topology , 1996, SIGGRAPH.
[116] Jean Duchon,et al. Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.
[117] C. R. Deboor,et al. A practical guide to splines , 1978 .
[118] Nira Dyn,et al. A 4-point interpolatory subdivision scheme for curve design , 1987, Comput. Aided Geom. Des..
[119] Peter Schröder,et al. A unified framework for primal/dual quadrilateral subdivision schemes , 2001, Comput. Aided Geom. Des..
[120] Jörg Peters,et al. Computing Volumes of Solids Enclosed by Recursive Subdivision Surfaces , 1997, Comput. Graph. Forum.
[121] Adi Levin,et al. Interpolating nets of curves by smooth subdivision surfaces , 1999, SIGGRAPH.
[122] K. B. Oldham,et al. An Atlas of Functions. , 1988 .
[123] A. A. Ball,et al. An investigation of curvature variations over recursively generated B-spline surfaces , 1990, TOGS.
[124] Nira Dyn,et al. The subdivision experience , 1994 .
[125] Tony DeRose,et al. Multiresolution analysis for surfaces of arbitrary topological type , 1997, TOGS.
[126] Joe Warren,et al. Subdivision Schemes for Variational Splines , 2000 .
[127] Adi Levin. Combined subdivision schemes for the design of surfaces satisfying boundary conditions , 1999, Comput. Aided Geom. Des..
[128] Gene H. Golub,et al. Matrix Computations, Third Edition , 1996 .
[129] P. Alfeld. Scattered data interpolation in three or more variables , 1989 .
[130] Peter Schröder,et al. Spherical wavelets: efficiently representing functions on the sphere , 1995, SIGGRAPH.
[131] A. A. Ball,et al. Conditions for tangent plane continuity over recursively generated B-spline surfaces , 1988, TOGS.
[132] Tunc Geveci,et al. Advanced Calculus , 2014, Nature.
[133] Ahmad H. Nasri,et al. Surface interpolation on irregular networks with normal conditions , 1991, Comput. Aided Geom. Des..
[134] Requicha,et al. Solid Modeling: A Historical Summary and Contemporary Assessment , 1982, IEEE Computer Graphics and Applications.
[135] H. Anton,et al. Functions of several variables , 2021, Thermal Physics of the Atmosphere.
[136] T. N. Stevenson,et al. Fluid Mechanics , 2021, Nature.
[137] Jakub Wejchert,et al. Animation aerodynamics , 1991, SIGGRAPH.
[138] Peter Lancaster,et al. The theory of matrices , 1969 .
[139] Manfred R. Trummer,et al. Multivariate B-Splines , 1990 .
[140] J. Warren,et al. A Smooth Subdivision Scheme for Hexahedral Meshes , 2001 .
[141] R. Franke. Scattered data interpolation: tests of some methods , 1982 .
[142] David Salesin,et al. Wavelets for computer graphics: a primer. 2 , 1995, IEEE Computer Graphics and Applications.
[143] M. Sabin,et al. Behaviour of recursive division surfaces near extraordinary points , 1978 .
[144] L. Kobbelt. Fairing by finite difference methods , 1998 .