A generalized pencil beam algorithm for optimization of radiation therapy.
暂无分享,去创建一个
An iterative pencil beam algorithm for optimization of multidimensional radiation therapy dose plans has been developed. The algorithm allows the use of both physical and radiobiological treatment objective functions and allows arbitrary sampling such as straight Cartesian grids with linear or nonlinear sampling functions or random sampling. The algorithm can account for and optimally combine almost all the degrees of freedom at an advanced radiotherapy clinic, such as different beam modalities and spectra, beam directions, beam fluence distributions, and time-dose fractionations. The algorithm allows for external charged and neutral beams as well as intracavitary and interstitial sources to be optimally combined. A quantity termed the generalized fluence vector is introduced, combining fluences and energy fluences from external beams as well as the radiation source densities of intracavitary and interstitial sources or external source distributions. The positivity constraint on the generalized fluence can therefore be applied directly during the optimization procedure. The convergence properties and the required iteration time of the algorithm are discussed. Several examples with combinations of photon and electron beams of different energies and directions of incidence are presented. The optimization has been made with the treatment objective to maximize the probability of achieving tumor control without causing severe complications in healthy normal tissues.