Searching the Solution Space in Constructive Geometric Constraint Solving with Genetic Algorithms

Geometric problems defined by constraints have an exponential number of solution instances in the number of geometric elements involved. Generally, the user is only interested in one instance such that besides fulfilling the geometric constraints, exhibits some additional properties. Selecting a solution instance amounts to selecting a given root every time the geometric constraint solver needs to compute the zeros of a multi valuated function. The problem of selecting a given root is known as the Root Identification Problem.In this paper we present a new technique to solve the root identification problem. The technique is based on an automatic search in the space of solutions performed by a genetic algorithm. The user specifies the solution of interest by defining a set of additional constraints on the geometric elements which drive the search of the genetic algorithm. The method is extended with a sequential niche technique to compute multiple solutions. A number of case studies illustrate the performance of the method.

[1]  D. E. Goldberg,et al.  Genetic Algorithms in Search, Optimization & Machine Learning , 1989 .

[2]  G. Laman On graphs and rigidity of plane skeletal structures , 1970 .

[3]  María Victoria Luzon García Resolución de restricciones geométricas. Selección de la solución deseada , 2001 .

[4]  尾形 克彦,et al.  State space analysis of control systems , 1967 .

[5]  Beat D. Brüderlin Rule-based geometric modelling , 1987 .

[6]  L. Lovász,et al.  On Generic Rigidity in the Plane , 1982 .

[7]  Richard W. Hamming,et al.  Error detecting and error correcting codes , 1950 .

[8]  James E. Baker,et al.  Reducing Bias and Inefficienry in the Selection Algorithm , 1987, ICGA.

[9]  Vassilios Petridis,et al.  Varying fitness functions in genetic algorithm constrained optimization: the cutting stock and unit commitment problems , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[10]  Robert Joan-Arinyo,et al.  A correct rule-based geometric constraint solver , 1997, Comput. Graph..

[11]  A. E. Eiben,et al.  Self-adaptivity for constraint satisfaction: learning penalty functions , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[12]  Christoph M. Hoffmann,et al.  Geometric constraint solver , 1995, Comput. Aided Des..

[13]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[14]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[15]  Ralph R. Martin,et al.  A Sequential Niche Technique for Multimodal Function Optimization , 1993, Evolutionary Computation.

[16]  C. Hoffmann,et al.  Symbolic and numerical techniques for constraint solving , 1998 .

[17]  Hans-Paul Schwefel,et al.  Evolution and Optimum Seeking: The Sixth Generation , 1993 .

[18]  Lawrence J. Fogel,et al.  Intelligence Through Simulated Evolution: Forty Years of Evolutionary Programming , 1999 .

[19]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[20]  Heinz Mühlenbein,et al.  Evolution algorithms in combinatorial optimization , 1988, Parallel Comput..

[21]  Alain Pétrowski,et al.  A clearing procedure as a niching method for genetic algorithms , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[22]  Zbigniew Michalewicz,et al.  Evolutionary Computation 1 , 2018 .

[23]  Gunar E. Liepins,et al.  Some Guidelines for Genetic Algorithms with Penalty Functions , 1989, ICGA.

[24]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[25]  Robert Joan Arinyo,et al.  Declarative characterization of a general architecture for constructive geometric constraint solvers , 2002 .

[26]  Alan K. Mackworth Consistency in Networks of Relations , 1977, Artif. Intell..

[27]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[28]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[29]  Caroline Essert,et al.  Sketch-based pruning of a solution space within a formal geometric constraint solver , 2000, Artif. Intell..

[30]  Heinz Mühlenbein,et al.  6. Genetic algorithms , 2003 .

[31]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[32]  Christoph M. Hoffmann,et al.  Correctness proof of a geometric constraint solver , 1996, Int. J. Comput. Geom. Appl..

[33]  David G. Luenberger,et al.  State space analysis of control systems , 1967 .

[34]  A. E. Eiben,et al.  GA-easy and GA-hard Constraint Satisfaction Problems , 1995, Constraint Processing, Selected Papers.

[35]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[36]  John R. Koza,et al.  Genetic programming 2 - automatic discovery of reusable programs , 1994, Complex Adaptive Systems.

[37]  Nuria Mata Burgarolas Solving incidence and tangency constraints in 2D , 1997 .

[38]  John J. Grefenstette,et al.  Proportional selection and sampling algorithms , 1997 .

[39]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[40]  A. E. Eiben,et al.  Constraint-satisfaction problems. , 2000 .

[41]  David B. Fogel,et al.  System Identification Through Simulated Evolution: A Machine Learning Approach to Modeling , 1991 .

[42]  Christoph M. Hoffmann,et al.  A graph-constructive approach to solving systems of geometric constraints , 1997, TOGS.

[43]  Robert Joan-Arinyo,et al.  Combining constructive and equational geometric constraint-solving techniques , 1999, TOGS.

[44]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[45]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[46]  Samir W. Mahfoud Niching methods for genetic algorithms , 1996 .

[47]  John J. Grefenstette,et al.  Rank-based selection , 2018, Evolutionary Computation 1.

[48]  Sebastià Vila-Marta,et al.  Resolución de Restricciones Geométricas , 2003, Inteligencia Artif..

[49]  C. Essert,et al.  Exploration of a solution space structured by finite constraints , 2000 .