Dynamic Networks of Timed Petri Nets

We study dynamic networks of infinite-state timed processes, modelled as unbounded Petri nets. These processes can evolve autono-mously, synchronize with each other (e.g., in order to gain access to some shared resources) and be created or become garbage dynamically. We introduce dense time in two different ways. First, we consider that each token in each process carries a real valued clock. We prove that this model can faithfully simulate Turing-complete formalisms and, in particular, safety properties are undecidable for them. Second, we consider locally-timed processes, where each process carries a single real valued clock. For them, we prove decidability of safety properties by a non-trivial instantiation of the framework of Well-Structured Transition Systems.

[1]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[2]  C. Ramchandani,et al.  Analysis of asynchronous concurrent systems by timed petri nets , 1974 .

[3]  Parosh Aziz Abdulla,et al.  Timed Petri Nets and BQOs , 2001, ICATPN.

[4]  Parosh Aziz Abdulla,et al.  Algorithmic Analysis of Programs with Well Quasi-ordered Domains , 2000, Inf. Comput..

[5]  Bengt Jonsson,et al.  CONCUR ’94: Concurrency Theory , 1994, Lecture Notes in Computer Science.

[6]  Mogens Nielsen,et al.  Application and Theory of Petri Nets 2000: 21st International Conference, ICATPN 2000 Aarhus, Denmark, June 26–30, 2000 Proceedings , 2000, ICATPN.

[7]  Vladimir A. Bashkin,et al.  Timed Resource Driven Automata Nets for Distributed Real-Time Systems Modelling , 2013, PaCT.

[8]  Thomas A. Henzinger,et al.  The Observational Power of Clocks , 1994, CONCUR.

[9]  P. Merlin,et al.  Recoverability of Communication Protocols - Implications of a Theoretical Study , 1976, IEEE Transactions on Communications.

[10]  Parosh Aziz Abdulla,et al.  Forward Reachability Analysis of Timed Petri Nets , 2004, FORMATS/FTRTFT.

[11]  Louchka Popova-Zeugmann,et al.  On Time Petri Nets , 1991, J. Inf. Process. Cybern..

[12]  Joël Ouaknine,et al.  Nets with Tokens which Carry Data , 2008, Fundam. Informaticae.

[13]  Maciej Koutny,et al.  Localities in systems with a/sync communication , 2012, Theor. Comput. Sci..

[14]  Marc Boyer,et al.  On the Compared Expressiveness of Arc, Place and Transition Time Petri Nets , 2008, Fundam. Informaticae.

[15]  Philippe Schnoebelen,et al.  Well-structured transition systems everywhere! , 2001, Theor. Comput. Sci..

[16]  Graham Higman,et al.  Ordering by Divisibility in Abstract Algebras , 1952 .

[17]  Philippe Schnoebelen,et al.  The Ordinal-Recursive Complexity of Timed-arc Petri Nets, Data Nets, and Other Enriched Nets , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[18]  Parosh Aziz Abdulla,et al.  Verifying Networks of Timed Processes (Extended Abstract) , 1998, TACAS.

[19]  Robin Milner The Flux of Interaction , 2001, ICATPN.

[20]  Fernando Rosa-Velardo,et al.  Expressiveness of Dynamic Networks of Timed Petri Nets , 2014, LATA.

[21]  Wojciech Rytter,et al.  On the Maximal Number of Cubic Runs in a String , 2010, LATA.

[22]  Fernando Rosa-Velardo,et al.  Decidability and complexity of Petri nets with unordered data , 2011, Theor. Comput. Sci..

[23]  Yassine Lakhnech,et al.  Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems , 2004, Lecture Notes in Computer Science.

[24]  Victor E. Malyshkin,et al.  Parallel computing technologies , 2011, The Journal of Supercomputing.

[25]  Rami R. Razouk,et al.  Performance Analysis Using Timed Petri Nets , 1984, PSTV.

[26]  Parosh Aziz Abdulla,et al.  Dense-Timed Petri Nets: Checking Zenoness, Token liveness and Boundedness , 2006, Log. Methods Comput. Sci..

[27]  Jörg Desel,et al.  Application and Theory of Petri Nets and Concurrency , 2013, Lecture Notes in Computer Science.

[28]  Jean-François Raskin,et al.  ω-Petri Nets , 2013, Petri Nets.

[29]  David de Frutos-Escrig,et al.  Decidability of Properties of Timed-Arc Petri Nets , 2000, ICATPN.

[30]  Fernando Rosa-Velardo,et al.  Name Creation vs. Replication in Petri Net Systems , 2008, Fundam. Informaticae.